Mathematics and Redistricting

Trinity College, Fall 2019 (Kyle Evans)
(Re)Apportionment

United States Constitution requires the House of Representatives to be (re)apportioned every 10 years
(Re)Apportionment

United States Constitution requires the House of Representatives to be (re)apportioned every 10 years

...but how?

Constitution:

• “Each state shall have at least one Representative”

• “The number of Representatives shall not exceed one for every 30,000”
(Re)Apportionment

Suppose you had to assign 10 representatives for the following four states based on their populations:

- State A: 25,000
- State B: 35,000
- State C: 18,000
- State D: 22,000

Total: 100,000 people
(Re)Apportionment

Suppose you had to assign 10 representatives for the following four states based on their populations:

- State A: 25,000 → 2 reps? 3 reps?
- State B: 35,000 → 3 reps? 4 reps?
- State C: 18,000 → 2 reps?
- State D: 22,000 → 2 reps?

Total: 100,000 people
Suppose you had to assign 10 representatives for the following four states based on their populations:

- State A: 25,000 → 2 reps? 3 reps?
- State B: 35,000 → 3 reps? 4 reps?
- State C: 18,000 → 2 reps?
- State D: 22,000 → 2 reps?

Total: 100,000 people

Math question: How do we translate fractional amounts to whole number representatives?
1790 – Congress passes the first apportionment method which was supported (sponsored) by Alexander Hamilton
Hamilton’s Method

1790 – Congress passes the first apportionment method which was supported (sponsored) by Alexander Hamilton

- Step 1: Standard Divisor = (Total population) ÷ (Number of representatives)
Hamilton’s Method

1790 – Congress passes the first apportionment method which was supported (sponsored) by Alexander Hamilton

• Step 1: Standard Divisor = (Total population) ÷ (Number of representatives)

• Step 2: For each state: Standard Quota = (State pop.) ÷ (Standard Divisor)
Hamilton’s Method

1790 – Congress passes the first apportionment method which was supported (sponsored) by Alexander Hamilton

• Step 1: Standard Divisor = (Total population) ÷ (Number of representatives)
• Step 2: For each state: Standard Quota = (State pop.) ÷ (Standard Divisor)
• Step 3: For each state: Lower Quota = Standard Quota rounded down (always)
1790 – Congress passes the first apportionment method which was supported (sponsored) by Alexander Hamilton

- **Step 1:** Standard Divisor = (Total population) ÷ (Number of representatives)
- **Step 2:** For each state: Standard Quota = (State pop.) ÷ (Standard Divisor)
- **Step 3:** For each state: Lower Quota = Standard Quota rounded down (always)

Add up the lower quotas, how many seats remain?
Hamilton’s Method

1790 – Congress passes the first apportionment method which was supported (sponsored) by Alexander Hamilton

• Step 1: Standard Divisor = (Total population) ÷ (Number of representatives)
• Step 2: For each state: Standard Quota = (State pop.) ÷ (Standard Divisor)
• Step 3: For each state: Lower Quota = Standard Quota rounded down (always)

Add up the lower quotas, how many seats remain?

• Step 4: Fractional Part = number following the decimal of the standard quota
Assign states extra seats starting with largest fractional part

Final representatives = (Lower Quota) or (Lower Quota + 1)
Jefferson’s Method

1792 – George Washington vetoed Hamilton’s Method in favor in a method supported (sponsored) by Thomas Jefferson

Fun fact: This was the first presidential veto in U.S. history!

At this point, the total number of representatives was not fixed and changed every 10 years
Jefferson’s Method

• Step 1: Calculate the Standard Divisor, Standard Quotas, and Lower Quotas.
Jefferson’s Method

• Step 1: Calculate the Standard Divisor, Standard Quotas, and Lower Quotas.
• Step 2: Choose a Modified Divisor (slightly less than the standard divisor) and for each state: Modified Quota = (State Population) ÷ (Modified Divisor)
Jefferson’s Method

- Step 1: Calculate the Standard Divisor, Standard Quotas, and Lower Quotas.
- Step 2: Choose a Modified Divisor (slightly less than the standard divisor) and for each state: Modified Quota = (State Population) ÷ (Modified Divisor)
- Step 3: Check if the new Lower Quotas add up to the desired number of representatives. If not, try a different Modified Divisor.
 - If you are still have representatives left over, choose a slightly lower modified divisor.
 - If you assigned too many representatives, choose a slightly higher modified divisor.
Jefferson’s Method

• Used from 1792–1832

• 1832 – New York’s standard quota = 38.59
 New York’s number of rep’s = 40
Jefferson’s Method

- Used from 1792-1832
- 1832 – New York’s standard quota = 38.59
 New York’s number of rep’s = 40

Example of an upper quota violation showing that method favors states with larger populations
Webster’s Method

• First used in 1842 (supported by Daniel Webster)
• Step 1: Calculate the Standard Divisor, Standard Quotas, and Natural Quotas (round naturally based on .5 instead of always rounding down)
Webster’s Method

- First used in 1842 (supported by Daniel Webster)
- Step 1: Calculate the Standard Divisor, Standard Quotas, and Natural Quotas (round naturally based on .5 instead of always rounding down)

Check how many representatives have been apportioned.

- Step 2: Choose a Modified Divisor (adjust for needing to gain or lose reps) and for each state: Modified Quota = (State Population) ÷ (Modified Divisor)
Webster’s Method

• First used in 1842 (supported by Daniel Webster)

• Step 1: Calculate the Standard Divisor, Standard Quotas, and Natural Quotas (round naturally based on .5 instead of always rounding down)

Check how many representatives have been apportioned.

• Step 2: Choose a Modified Divisor (adjust for needing to gain or lose reps) and for each state: Modified Quota = (State Population) ÷ (Modified Divisor)

• Step 3: Check if the new Natural Quotas add up to the desired number of representatives. If not, try a different Modified Divisor.
 • If you need to gain representatives, choose a slightly lower modified divisor.
 • If you assigned too many representatives, choose a slightly higher modified divisor.
Mathematical Compromise and Confusion

- 1852-1892: Adjusted total number of Representatives so that Hamilton’s Method and Webster’s Method agreed and produced the same apportionment.

- 1872 – many new states admitted to Union and the new apportionment didn’t agree with either method and contributed to controversial Hayes vs. Tilden 1876 Presidential election.
Mathematical Compromise and Confusion

- 1852–1892: Adjusted total number of Representatives so that Hamilton’s Method and Webster’s Method agreed and produced the same apportionment.

- 1872 – many new states admitted to Union and the new apportionment didn’t agree with either method and contributed to controversial Hayes vs. Tilden 1876 Presidential election.

- 1901 – Alabama paradox led to a proposal minimizing Rep’s for ME and CO and Hamilton’s Method was no longer used.
Mathematical Compromise and Confusion

• 1852–1892: Adjusted total number of Representatives so that Hamilton’s Method and Webster’s Method agreed and produced the same apportionment.

• 1872 – many new states admitted to Union and the new apportionment didn’t agree with either method and contributed to controversial Hayes vs. Tilden 1876 Presidential election.

• 1882 – discovery of the Alabama paradox – using Hamilton’s Method someone realized with 299 Rep’s AL would get 8, but with 300 Rep’s AL would get 7.

• 1901 – Alabama paradox led to a proposal minimizing Rep’s for ME and CO and Hamilton’s Method was no longer used.

• Webster’s Method used from 1901–1941.
Huntington-Hill Method

• 1941 – Congress passes a law setting 435 as fixed number of representatives and using a new method created by a mathematician and statistician

• Step 1: Calculate the Standard Divisor, Standard Quotas, and both the Lower and Upper Quotas (always round up)
Huntington-Hill Method

• 1941 – Congress passes a law setting 435 as fixed number of representatives and using a new method created by a mathematician and statistician.

• Step 1: Calculate the Standard Divisor, Standard Quotas, and both the Lower and Upper Quotas (always round up).

• Step 2: Round Standard Quotas according to the Geometric Mean of the lower and upper quotas.

\[
\text{Geometric Mean of } a \text{ and } b = \sqrt{ab}
\]

Check how many representatives have been apportioned.
Huntington-Hill Method

- 1941 – Congress passes a law setting 435 as fixed number of representatives and using a new method created by a mathematician and statistician

- Step 1: Calculate the Standard Divisor, Standard Quotas, and both the Lower and Upper Quotas (always round up)

- Step 2: Round Standard Quotas according to the Geometric Mean of the lower and upper quotas.

 \[
 \text{Geometric Mean of } a \text{ and } b = \sqrt{ab}
 \]

Check how many representatives have been apportioned.

- Step 3: Choose a Modified Divisor and round Modified Quotas according to the geometric means until the correct number of representatives are assigned.
Huntington–Hill Method

• This is the method still in use today

• (1991) *Montana v. U.S. Dep’t of Commerce* – Supreme Court ruled that the Huntington–Hill method is constitutional

• Just requires state populations and a simple Excel table!
Current Map by number of Representatives