
10 How to Draw Learning 
Curves: Their Use and 
Justification 

Robert E. Shaw 
Thomas R.  Alley 
Department of Psychology 
University of Connecticut 

"true rigor is productive, being distinguished from another rigor which is purely 
formal and tiresome, casting a shadow over the problems it touches" 

-Emile Picard (cited in Kline, 1972, p. 1025) 

INTRODUCTION: LEARNING AS A CUMULATIVE 
FUNCTION 

Although learning theorists often disagree about what learning is, they agree 
that whatever the process is its effects are clearly cumulative and, therefore, 
may be plotted as a curve. By cumulative we mean that somehow the effects of 
experience carry over to aid later performance. This property is fundamental to 
the construction of "learning curves." The justification for drawing learning 
curves is the belief that such a cumulative function exists; that, mathematically 
speaking, the function is well defined. But is it? It is one thing to assume a 
function exists because you need it, and quite another to define it rigorously and 
justify its use. 

This chapter examines this question, clarifies the definition of learning, and 
proposes a function whose existence justifies drawing learning curves. Finally, 
we show how this function may represent learning as a lawful process. This is 
important if we wish to justify the method for drawing learning curves rather 
than merely take it for granted. 
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T h e  Cartesian Method for  Drawing Learning Curves 

All traditional techniques for drawing "learning curves" presume that successive 
data-points can be connected by a (smooth) curve. Typically, we use graphs to 
display such results because they provide a clear, succinct, and accurate way to 
reveal any cumulative effects over successive "trials" that may exist. What must 
we assume about learning to draw the corresponding curve? 

Although there are a variety of methods for constructing "learning curves," 
they all assume that successive trials or episodes in a learning series may be 
plotted along the abscissa (x-axis), response characteristics along the ordinate 
(y-axis), and that the data-points distributed in the .icy-plane may be legitimately 
connected by a curve. This is the Cartesian method. Everyone who draws learning 
curves tacitly assumes its validity (Kling & Riggs, 1971, p. 609). Using the 
Cartesian method to construct learning curves implies that learning is a function 
that maps values on the y-axis into values on the x-axis, and also that the mapping 
is at least continuous over the x-axis. 

We say "at least" because, even though the function must be continuous over 
the x-axis if a curve is to be drawn, it may not also be continuous over the y- 
axis. Instead, it may be argued that learning is discontinuous over the y-axis 
(e.g., Greeno, 1974; Krechevsky, 1938). Under such an assumption, the function 
involved would still be represented by a continuously connected curve but the 
curve would be "stepped over successive trials; that is, it would be a step 
function. Consequently, to appreciate what is at issue, one must not confuse 
stepwise-discontinuity over the response measure with topological continuity 
(connectivity) over successive trials. The latter assumption rather than the former 
underlies the Cartesian method for drawing learning curves of any sort- 
including those that fit an all-or-none hypothesis about learning (see Restle, 
1965). 

If learning curves are to be justified, there must be reason to believe that the 
x-axis represents a continuum, and trials a series of samples of that continuum. 
For if it is not a continuum, then how do we know whether the trials truly 
represent samples of the same phenomenon~whether there is a dimension called 
"learning" over which measurements might legitimately be taken? This is implied 
when we assume that successive episodes belong to the same series, as when 
we assume that a series of trials constitutes one experiment rather than a succes- 
sion of distinct experiments. This also underlies our designation of experimental 
(independent) variables. 

What guarantees that the successive samples do comprise a series? This is 
the crucial question for deciding whether or not the Cartesian method of curve 
drawing is justified for learning data. There are two answers to this question: 
One answer is that the successive samples may be connected because there is a 
lawful relationship among the samples (or data-points); a second answer is that 
the samples may be connected because there is some operationally defined rule 
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for doing so. Such a law or rule for defining a series of relationships for connecting 
values (e.g., xy-values) is exactly what we mean by a function. ' The mathematical 
justification of the Cartesian method requires only that a rule be found for defining 
the learning function, but much more is required to justify its scientific use. 

Given the mathematical rule by which samples may be connected to form a 
curve, the question remains should they be so connected? Are the constraints 
on the system responsible for the learning data a reasonable expression of the 
rule used by the system, or of a law governing it? An answer to this question 
moves us one step closer to understanding how an animal "recognizes" that 
successive situations are sufficiently similar to belong to the same series, a series 
over which "savings" might accumulate in the manner revealed by a learning 
curve. What the "mechanism" of learning is remains a mystery until we discover 
how the learner perceives the relation that connects the successive trials into a 
continuous series (cf. Koffka, 1935). 

We must be careful not to jump to the conclusion that the scientist's view of 
the task, from an external perspective, is necessarily the same as the organism's 

'Historically, the most revolutionary proposal for how functions should be defined was made by 
the French mathematician Dirichlet in the 18th century. After witnessing many failures by others 
to provide completely satisfactory analytic or algebraic accounts of functions, he opted for liberalizing 
the concept so that it no longer lay in the exclusive province of mathematics but moved to the more 
general province of logic. He proposed that any value y be considered a function of a variable x 
whenever a precise principle of correspondence between x and y could be clearly stated. He no 
longer regarded it as indispensable that the principle of correspondence be defined by mathematical 
operations alone; rather, a purely verbal definition could suffice if it were logically precise. This 
compromise in rigor opened the door to the eventual development of a purely logical theory of 
functions, recursive function theory, on which the theory of computable functions is based, and by 
which a new interpretation is given to the meaning of "rigorous." The theory of computable functions 
provides an important alternative to the classical technique for rigorously formulating functions- 
an alternative, however, that exceeds the limits of traditional natural sciences such as physics. 

Perhaps the notorious principle of complementarity owes its existence to this breach in the 
tradition of physics being the sole judge of how functions should be rigorously defined. This principle 
asserts that no description of phenomena in nature can be given completely using natural (dynamic) 
law but also will require the use of rate-independent linguistic variables. Hence all phenomena, 
especially those involving living systems, will require explanations that draw on both rule-defined 
(linguistic mode) and law-defined (dynamic mode) functions (Jammer, 1974; Pattee, 1979, in press). 

Rule-defined functions provide the foundations for computer science, mathematical linguistics, 
and most major attempts in cognitive science to model the mechanisms responsible for psychological 
functions, such as perceiving, remembering, and learning. The tacit acceptance of Dirichlet's proposal 
is, most likely, a major reason for the close alliance we now witness being forged among these 
kindred disciplines. 

The ecological approach to psychology is a notable exception that resists the rule characterization 
of function and, hence, of psychological functions. This approach prefers to redefine what is meant 
by law while conserving the original meaning of a function as the expression of some underlying 
law of nature. The purpose served by this strategy is that continuity between psychology and physics, 
biology and physics, and psychology and biology might be better preserved, and the paradoxes of 
mind-matter and mind-body dualisms might be avoided (see Tuwey, Shaw, Reed, & Mace, 1981). 
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internal perspective. In designing an experiment, an experimenter can assume 
a vague, intuitive rule presumed to connect the trials into a series even if no 
such rule exists for the learner to follow, or if a different rule is actually used 
by the learner in perceiving the relationship over trials that links them to the 
same series. Because of this possibility, both theorists and experimenters may 
impute a simpler basis to the continuity over successive trials than is actually 
the case. Indeed, this may be the reason that so few questions have been raised 
about the continuity tacitly assumed to justify the drawing of learning curves. 
It is not enough simply to define operationally a function by which a curve might 
be drawn to fit observed data-points; one must also show why that particular 
function is a reasonable candidate for modeling the law- or rule-governed con- 
straints actually responsible for the learning accomplished by the organism in a 
given context. Although we address the formal basis for relating members of 
learning series, explanation of the perceptual grounds by which certain temporally 
distributed events and not others join together to form a learning series is beyond 
the scope of this chapter. 

Let us pause to summarize the steps that justify the use of the Cartesian 
method in drawing learning curves: 

1. Plot the sampled data-points in an ^-coordinate space where the x-axis 
represents the independent variable and the y-axis the dependent response mea- 
sure. This determines the discrete data-points to be connected. 

2. Find a rule for operationally defining a function, y = f (x ) ,  that describes 
a smooth curve that passes through every data-point. This is the function whose 
existence needs to be justified, for without it only discontinuous plots (e.g., bar 
graphs) would be justified. 

Note that this second step is not a license for indiscriminately connecting adjacent 
data-points; rather it is a primary demand that before we connect the data-points 
we must first justify that the function assumed does in fact exist and, by existing, 
serves as a constraint that guides one's pen along a predetermined course for 
joining each point in a manner analogous to the law or mechanism that guides 
the learner through related learning episodes. 

It is a popular but insidious mistake, a fallacy of method, to treat the learning 
curve (or any other curve for that matter) as having an existence independent of 
the function it expresses, or the function as having any reality apart from the 
law or mechanism that exhibits it. This is a dangerous tactic for science, for it 
risks mistaking a fiction for a fact. At best, the premature drawing of the curve 
serves only as the concretion of your hope or hypothesis, as the obsewer-turned- 
theorist, that the function will be found and scientifically justified-if not by 
you, then by someone else. Thus the final step toward justifying the production 
of learning curves is: 
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3. Specify the scientific constraints (e.g., the law or mechanism) that the 
learning function putatively expresses that make it more than a mathematical 
fiction. 

Exactly how one should do this is a choice of method. Behaviorists will do 
it one way, cognitive psychologists another, and ecological psychologists still 
another. Where the behaviorist might search for the invariant relationship among 
reinforcement contingencies common over trials (a stimulus dimension), the 
cognitive psychologist might search for a rule associating common features (a 
mediating construct). The two approaches differ regarding the role that observ- 
ables are believed to play in characterizing the dimension of "belongingness" 
by which successive trials form a connected series: Behaviorism emphasizes 
"external" states of the learning situation, whereas cognitive psychology empha- 
sizes the "internal" states of the learner. 

Learning as an Ecosystem Function 

In sharp contrast to both of these approaches, ecological psychology seeks the 
required continuity in the covariation of two dimensions: one having its footing 
in the environment, the other in the organism. The fundamental postulate of the 
ecological approach is that these two dimensions are invariantly related by a pair 
of functions: perception and action. Gibson (1979) refers to this as the principle 
of organism-environment mutuality; a mutuality that might be modeled as a 
mathematical duality2 (Shaw & Turvey, 1981; Shaw, Turvey, & Mace, 1982; 
Turvey & Shaw, 1979; Turvey, Shaw, & Mace, 1977). Let us consider briefly 
the relevance of the principle of mutuality, or duality, for the problem of char- 
acterizing learning. 

Roughly speaking, perception is a mapping from the series of values taken 
by the environmental variable into the series of values taken by the organism 
variable, whereas action consists of the inverse mapping. There is, however, a 

'A mathematical duality D is an operation that establishes a special isomorphic correspondence 
between one structure X (e.g. ,  a series) and another structure Y (e .g . ,  another series), so that for 
any function f that establishes a value in X there exists another function g that establishes a corre- 
spending (dual) value in Y. Furthermore, a duality between the structures is not transitive, for if 
there exists another function h that putatively carries the image of X into another structure Z, then 
Z must equal X .  

When D is its own inverse, it is sometimes said to establish "double" duals between X and Z. 
The ecological approach we are espousing postulates a doubly dual relationship between the values 
of X, taken as environmental properties, and corresponding values of Y, taken as organismic pmp- 
erties. We call the duality operation/: X + Y, perception, and its values, afforabnces. We call the 
inverse duality operation g: Y + X ,  action, and its values, effectivities. The double duality, D, 
consisting of the operations / and g, D: X <-Ã Y, designates a system of constraints composing an 
ecosystem. 
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special relationship between the perceptual function and the action function that 
guarantees their covariation whenever the organism is successfully guided by 
perception through a series of felicitous regulatory acts (e.g., muscular adjust- 
ments) that achieve an intended goal (e.g., the grasping of an object). Under 
such felicitous circumstances, the two functions must become duals so that the 
course of values assumed by one constrains the course of values assumed by the 
other (see footnote 2) in an ongoing and mutual process: 

Thus perception and action operate on each other reciprocally, in a "closed 
looping" fashion rather than in a open-ended, causal chaining fashion. The 
covariation that results is properly termed ecological because it involves both 
environmental and organismic variables. 

Finally, the perceptual and action series spiral through space-time intertwined 
like a double helix, tracing out a path determined by a logic of circular constraint. 
In this way, ecological events involving perceiving and acting determine "fat" 
world-lines in space-time (four-dimensional) geometry (see Kugler, Turvey, 
Carello, & Shaw, in press). 

In this scheme, learning is a lawfifl operation that increases the coordination 
between perception and action series. Metaphorically, learning is a function that 
tightens the constraints on the double helix, bringing the perceptual "helix" (or 
series) into closer alignment with the action "helix" (or series). This view of 
learning assumes the existence of two series whose values can be coupled such 
that certain values in one series are potentially duals of certain values in the 
other series. "Affordances" and "effectivities" are just such duals. 

Affordances and Effectivities as Duals. An object that affords grasping by 
some organism is said to have the affordance property of "graspability" for that 
organism. The affordance property is a value that will appear in the perceptual 
series of a properly "attuned" organism (i.e., of an organism that has a "grasper" 
properly designed and controlled to accommodate the object in question). When 
an organism learns to use its grasper to achieve grasping of a given object, the 
affordance property also takes on a corresponding (dual) value in the action 
series. We call this dual value in the action series an effectivity. 

These series are by no means simple; instead, they consist of higher order 
invariant properties of environmental situations and organismic states. The per- 
ceptual series is a series of affordances linked by the actions of an organism 
toward environmental objects. The action series is a series of effectivities linked 
by an organism's ongoing perceptions of environmental properties. Like afford- 
ances, effectivity values are complex, referring to the fact that for an organism 
to act, some appropriate effector organ must be connected to a repertoire of 

control constraints (e.g., muscular adjustments) suitable for determining an act 
(e.g., grasping of x) that realizes some affordance goal (the graspability of x). 

Because of our endorsement of the principle of organism-environment mutual- 
ity, we, as ecological psychologists, require two of everything listed previously: 
two sets of data-points~one showing how the learner's perception of the task 
variables changed over time and one showing how the learner's action (response 
characteristics) changed as a function of the task variables; two learning curves 
must be justified-one showing perceptual learning in the task and the other 
action learning; two mathematical rules must be found for determining how the 
data-points are to be connected to form a series; two laws must be discovered 
to justify the scientific use of the pair of functions; and finally, in keeping with 
the concept of affordance, the two laws must be shown to "fuse" into a dual 
pair of reciprocal equations consisting of complementary variables~one equation 
to describe changes in the perceptual series and one to describe the dual changes 
in the action series. Here again the concept of dual is the mathematical one rather 
than the philosophical one and refers to a special relationship between two 
equations (or functions), so that the solution to (definition of) one specifies the 
solution to (definition of) the other. 

We return to this discussion of duality in the ecological approach to learning 
toward the end of this chapter. In what follows now, we show how one might 
address each of the three points discussed earlier. Although our illustration is a 
serious attempt to provide a first pass on an ecological approach to learning 
theory, we hope that readers who disagree with that approach will, nevertheless, 
find some benefit for their own theories from an examination of the method used. 

Step 1. Plotting Data-Points Sampled from a 
Continuum 

Generally, we might define learning as a cumulative function, L,  that determines 
a mapping between two series: a perceptual (stimulus) series and an action 
(response) series. The perceptual series consists of episodes (e.g., trials) on 
which the learning function applies to increase the value of some response 
characteristic of the organism over time. This means that we can analyze the 
global function L into a series of lesser functions that apply locally to give the 
exact increment to the y-values (response characteristics) at each x-value (trial) 
as follows: 

where a and b are first and last trials, respectively, in the series of trials run. 
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There is, however, a subtlety in this characterization of learning that should 
not be overlooked: The "trial" variable must be considered to be imbedded in a 
continuum or else no curve can be drawn to connect the data-points in the 
Cartesian manner (where each distinct data-point is an (x, y) value in the plane 
of the graph y = f(x)). The continuity requirement is satisfied, however, by the 
assumption that L is a function that is continuously summable (integrable) over 
x. This is tantamount to the claim that x is a continuous variable and, therefore, 
qualified to be an axis over which a time-varying process might be well defined. 
This assumption that the x-intercepts of all adjacent data-points are at least 
integrable over time guarantees, in principle, the connectability of the data-points 
into the desired learning curve. What kind of function must L be for this assump- 
tion to be justified? 

In the next section we propose an answer to this question that accords with 
some of the most general facts known about learning. 

Step 2. Defining Learning by Analogy to Dissipative 
Functions 

Learning is not merely a simple accretion of a response tendency with repeated 
experience; often, if not always, specific and nonspecific changes in the general 
disposition to learn also accompany these changes in response characteristics. 
Therefore, any function used to represent learning must consist of two distinct 
parts: a "response" variable and a "state" variable (irrespective of whether the 
state variable is taken to be behaviorally, cognitively, or ecologically defined). 
The response variable expresses an "observable": the observed change in the 
behavior of the system. The state variable expresses a "dispositional": specific 
or nonspecific changes in the disposition of the system to learn. When this change 
in disposition is nonspecific, fosters learning, and persists over an extensive 
interval of time, we refer to it as the formation of a "learning set" (e.g., Harlow, 
1949) or, more generally, as "learning to learn" (e.g., Bransford, Stein, Shelton, 
& Owings, 1981). Conversely, when the nonspecific transfer effect is increas- 
ingly negative (inhibiting learning), we call it "fatigue." Both of these generalized 
changes in the disposition of organisms to learn are dissipative parameters: 
Learning to learn can be considered the dissipation of inhibition (e.g., of dis- 
tractions) and fatigue the dissipation of facilitation (e.g., of interest or energy). 

Historically, the mathematical characterization of functions involving dissi- 
pative parameters has proven problematic. For instance, the classical treatment 
of the behavior of a spring under differential loadings assumed the validity of 
Hooke's famous law asserting that strain (stretching or compressing) is directly 
proportional to stress (restorative force). Unfortunately, the problem is more 
complicated than this because the coefficient of elasticity of the spring, a dis- 
positional variable, tends (like the disposition to learn) to change with repeated 
use. Hooke's simple law fails to take this change into account. In Hooke's day, 
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it was not mathematically possible to formulate a function that included the 
effects on the spring's behavior of both the stress force and the dissipation of 
elasticity arising from stress. In fact, the mathematics needed to provide a gen- 
eralized version of Hooke's law did not become available until nearly two cen- 
turies later when Volterra, the great Italian mathematician, turned his attention 
to problems involving "hereditary" influences (Kramer, 1970). Dissipative changes 
in the disposition of a system to respond is but one among a class of influences 
that may operate persistently to alter dynamically the response characteristics of 
a system, be it living or not. 

A formal analogy holds between the formulation of laws required to relate 
observable to dispositional variables in physics and those required to serve a 
similar function in learning theory. (Some of the historical and technical details 
of this analogy are contained in Appendix A.) We believe that the task of 
formulating learning functions will be made easier if we examine how physics 
solved the problem of designing a general form of Hooke's law for springs: one 
that included dispositional variables that change as a function of use. With this 
as a guide, we might formulate analogous functions for learning with nested 
dispositional variables that also lawfully change their values as a function of use 
(practice). Such a formulation would satisfy Step 3 of our procedure forjustifying 
the drawing of learning curves by showing how the underlying function could 
be continuous over the x-axis. 

Common abstract solutions to the two classes of problems arise because 
learning systems, like physical systems with dissipative parameters, are governed 
by hereditary laws: laws that express the effects of hereditary influences on the 

, state (dispositional) variables of a system. If this is so, the problem of formulating 
rigorous laws of learning becomes an aspect of the more general problem of 
discovering the laws of what Picard (1907) called "hereditary mechanics." Picard 
coined this name for a new discipline to emphasize the fact that no existing form 
of mechanics yet included the study of laws involving hereditary influences; not 
classical mechanics, variational mechanics, quantum mechanics, or relativistic 
mechanics, for none of these approaches, in principle, can explain the behavior 
of systems that are governed even in part by dispositional variables that serve a 
"record-keeping" function (Jammer, 1974; Pattee, 1979, in press). 

Psychology is reputed to be the science of systems that do keep "records" 
that influence current states, yet it has not developed the te~hni~uesneeded for 
characterizing functions that incorporate dispositional variables: new functions 
whose courses of values are steered by hereditary influences. Instead, the field 
has concentrated on developing "mechanisms" founded either on old functions 
borrowed from the classical period of mathematical physics or on rules so intuitive 
that the functions they entail escape analysis. 

Much help can be obtained by exploiting analogic connections to abstractly 
similar problems in older fields, like physics, where formal techniques and 
scientific methods may be better developed. Thus our problem may be better 
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understood by analogy to the struggle of physics to define rigorously dissipative 
functions, a close analogue of our problem. Consequently, let us treat physics 
as a resource field from which certain formal tools might be borrowed. No 
reductionism is necessarily implied by such a strategy because the variables to 
be included in the learning function, the response variable and the dispositional 
variable, are psychological rather than physical. It is only the logical scheme, 
or syntax, of the law that we intend to borrow to help determine the type of 
function needed to model learning. We beg the reader's indulgence as we delve 
into unfamiliar matters drawn from the history of physics and mathematics. 
Although one half of the analogy, the resource field of hereditary mechanics, 
may be unfamiliar, the second half, the test field of learning theory, is not. Our 
intention is not to import psychology into physics nor physics into psychology, 
but to clarify the function by which learning might be defined by justifying 
learning curves. 

Learning a s  a Problem for  Hereditary Mechanics 

A function constrained by a hereditary influence (e.g., a dissipative parameter) 
cannot be captured by the ordinary means available to traditional physics for 
expressing functions, or by the laws they may represent. The means available 
have traditionally been either differential or partial differential equations and 
their integral counterparts. But none of these will do. (For discussion of the 
reasons, see Appendix A.) Because the laws of classical (variational) mechanics 
depend exclusively on rigorous expression in differential (integral) form, dis- 
sipative phenomena (such as the effects of fatigue on the behavior of an elastic 
system), although perfectly lawful, failed to fit the form of any known laws. 
This can be seen in the case of elastic systems (e.g., springs) alluded to earlier. 

Experimentation revealed that the behavior of elastic systems was not merely 
a function of its last initial condition, but also of the entire history of its initial 
conditions.' For instance, as pointed out earlier, a spring's behavior is not 

'Traditionally, two forms of physical laws are recognized: those that map initial conditions 
(forward in time) into final conditions, and those that map final conditions (backward in time) into 
initial conditions. The mathematical form of the "forward" acting law was that of a differential 
equation, whereas that of the "backward" acting law was that of an integral equation (see Appendix A). 
Classical mechanics developed laws that were exclusively differential in form, whereas varia!ioml 
mechanics was the name of the discipline that was devoted to the development of laws that were 
integral in form. These two approaches to mechanics expressed two distinct philosophical, even 
theological, orientations. Briefly, their differing motivations can be explained as follows: Because 
causes necessarily precede effects, the differential form, as used by classical (Lagrangian) mechanics, 
was deemed the appropriate function for expressing "causal" laws. By contrast, because goal-directed 
systems are constrained by the final (often optimal) state toward which they tend, the integral form, 
as used by variational (Hamiltonian) mechanics, was deemed the appropriate function for expressing 
'teleological" laws. As discussed in Appendix A, however, the defense of this distinction is not so 
straightforward as might first appear. 
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predictable from Hooke's law, which asserts that stress (restorative force) is 
directly proportional to the strain (change in length) undergone; instead, careful 
experimentation showed stress to be a function of the entire history of the strains 
undergone by the spring on all previous occasions (Lindsay & Margenau, 1957). 
Hence, strain acts as a hereditary influence on an elastic system, exerting a 
cumulative fatigue effect on its later behavior. What makes systems that operate 
under hereditary influences impossible t o  explain by the ordinary laws of 
mechanics? 

Hooke's law can be represented by the equation 

where x is the strain behavior of the spring (i.e., how far it will stretch), y is 
the stress (the tendency of the spring to restore itself to its original length when 
stretched), and k is the coefficient of elasticity of the system. From this equation 
we see that elastic systems with high coefficients have greater restorative forces 
than those with lower ones. Therefore, after a spring with a high k-value is 
loaded, we would expect it to stretch much less than a comparably loaded spring 
with a low k-value. Furthermore, according to this equation, we should also 
expect springs with the same k always to stretch by the same amount under 
identical loadings, irrespective of the distance or number of times they had been 
stretched in the past. As noted previously, this was shown not to be the case. 
Frequency of use and style of use have cumulative (hereditary) effects analogous 
to practice in the case of learning. Elasticity (k) decreases according to some 
function not contained in Hooke's simple law. Hooke's law treats k as a constant 
when it is really a variable that exhibits a rather orderly change in value over 
time proportional to its history of use. This proportion also requires a function 
for its rigorous expression. 

Stated more generally, we recognize that what is needed is a law statement 
involving two kinds of functions: an observable or behavioral function, and a 
dispositional or state function. Hooke provided us with a law statement involving 
only one function and a constant, but clearly there can be no generality to such 
an equation with respect to historical effects. Even if we make k a variable 
instead of a fixed value, we would have to determine its exact value empirically 
just before loading the spring for a new test of the law. Moreover, we would 
be unable to generalize to future uses of the spring because the test itself would 
have required loading of the spring, which would again alter the value of k: a 
vicious circle! 

In learning theory this would be analogous to trying to express learning over 
a series of trials as the function of an unspecified variable whose behavior is not 
known, but which cannot be determined without running the subject in still 
another learning trial, which itself alters the value of the variable: another vicious 
circle! This unspecified variable, like the k in Hooke's law, is a dispositional 
term referring to an unspecified state of the system: the capacity to learn under 
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the stipulated circumstances. If this unspecified variable can, like k, be treated 
as a fixed value (i.e., a constant), the equation predicting learning will be well 
behaved when the appropriate value is plugged in. On the other hand, should 
this value change as some linear or nonlinear function of exposure to the exper- 
imental variables, then, to that extent, the equation will fail to predict and will 
be an incomplete characterization. More importantly, learning will appear to be 
unlawful even though it is actually lawful. Thus, we may conclude that learning 
either is or is not law governed ony when we are sure that our equation is 
complete and that the behavior of all its terms is functionally specified. 

The existence of learning to learn demands a search for the appropriate formal 
means of expressing the dispositional term as a well-behaved function. It will 
not do simply to treat the capacity of an organism to learn as fixed, for then any 
lawfulness that might exist will escape detection. Nor will it do to try to cir- 
cumvent the problem by treating learning in terms of difference equations rather 
than the more demanding technique of functional analysis required in hereditary 
mechanics, for such difference equations are themselves not well behaved under 
circumstances where terms refer to functions of functions. This occurs, for 
example, where dispositional functions change their course as a function of 
behavioral functions (Greeno, 1974). Functions that are the function of other 
functions rather than of variables are called functionals. Strictly speaking, all 
hereditary functionals are in a sense nonlinear and, therefore, cannot be ade- 
quately expressed by linear equations; they can only be approximated. Moreover, 
as others (e.g., Hemstein, 1979) have recognized, learning is better described 
by nonlinear than linear models. (See Appendix B.) 

If, as we have argued, learning is a functional rather than merely a function, 
the linear equations typically used (as in traditional physics) will fail to capture 
the significant and necessary role played by hereditary influences. This suggests 
that a better understanding of the nature of this limitation may prove helpful in 
understanding the form that realistic formulations of learning must take if any 
lawfulness present is to be expressed. 

In the parlance of mechanics, we express this limitation of traditional law 
statements by saying that laws must be "initialized"; that is, the initial conditions 
for a law are not themselves an intrinsic part of the equation of the law but must 
be added before the law can be a ~ p l i e d . ~  This seems to make initial conditions 

'Initial conditions are the values that must be given to the free parameters in the equation for a 
law statement in order to be able to predict final conditions (outcomes) dynamically. For instance, 
applying the laws of mechanics to predict the final resting places of all the billiard balls struck in 
a game of billiards requires that we specify the momentum of each ball in the chain reaction. But 
because momentum is equal to the mass of a ball times its velocity, and the momentum of each 
subsequently struck ball is determined ultimately by the impulse force (force x time) applied to 
the first ball, the mass and velocity terms are initial conditions that must be specified before the 
equations for the applicable laws of motion can be evaluated to predict the final locations of each 
ball after the chain of collisions. 

an indispensable afterthought, something sorely needed for the practical appli- 
cation of the law but unencompassed by it. Then why not simply build laws that 
incorporate their initial conditions as an intrinsic component of the law statement? 
Why not simply construct equations for learning or mechanical laws out of 
functionals that incorporate functions of hereditary functions? Unfortunately, this 
is easier said than done. 

Classical mechanics (and all other branches of science that choose differential 
equations for expressing laws) is prohibited from taking this course of action 
because there is formally no way to place initial conditions within a differential 
form and still have a solvable equation.' This is because a hereditary influence 
requires a separate and distinct form of expression. Thus to formulate a law that 
incorporates hereditary influences like learning, we must liberalize our concept 
of the mathematical form that law statements might take. We must look beyond 
simple differential or integral forms and entertain some other possibility. What 
might this new form for a law equation be? 

To answer by way of a recapitulation, note that three properties of learning 
functions have been discussed: 

1. Learning functions are cumulative (i.e., on the average, they increase 
monotonically). 

2. The cumulative nature of such functions is, in general, positively (or 
negatively for aversive conditioning) constrained by hereditary influences on 
analogy to dissipative parameters. 

3. The generic learning functional, most likely, will prove to be nonlinear, 
with linearity being a special, if important, case. 

Taken together, these three properties suggest that learning functions must be 
characterized by a nonlinear integro-differential form. In the next section we 

Mathematically speaking, integral forms are opposite, or complementary to, differential forms: 
Whereas, under different initial values a differential equation specifies the values of individual points 
lying on a curve, an integral equation provides a general solution to the whole set of distinctly 
initialized differential equations, ireated collectively and simultaneously, and thereby yields the curve 
itself. Thus, differential forms sample the curve piecemeal whereas integral forms exhibit the whole 
curve so that it might be sampled. For this reason, the solving of a differential equation requires 
integration whereas the solving of integral equations requires differentiation. The attempt to nest all 
the initial conditions needed to evaluate fully a law statement couched in differential form would 
be ludicrous, because this would require the law equation to be solved prior to its application; it 
would require solutions to a potentially infinite set of differential equations before any application 
could be made: an impossible demand. 

The strategy of attempting to embed the final conditions under the law function in order to 
postdict the initial conditions, in the manner of (Hamilton's) variational mechanics, is similarly ill 
fated, for this would also require a priori knowledge of an inverse nonlinear hereditary functional 
on k: the very thing being sought. The proper strategy for avoiding this dilemma was taken by 
Volterra (see Appendix A). 
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discuss some of the problems that must be overcome before integro-differential 
equations can be made completely appropriate for characterizing learning. 

S t e p  3. A Hereditary Law Form for Learning 

Like the law forms of classical physics that ignored the dissipative parameters 
of elastic systems, the law forms adopted by classical learning theory, stochastic 
learning models, and cognitive approaches also fail to provide a principled place 
for the hereditary aspect of learning. This is not to say that learning equations 
have not been written. They have, but to our knowledge, no innovation in the 
construction of law forms has resulted from such attempts. 

For example, neither reinforcement (causal) nor expectancy (teleological) 
theories succeeded in providing new law forms that can explain all types of 
learning. Their failure is analogous to thefailure of their corresponding law 
forms in mechanics. As discussed earlier. because of their dependence on dif- 
ferential and integral law forms, neither classical ("causal") nor variational 
("teleological") mechanics could provide a strictly lawful explanation of elastic 
systems. Apparently, some law form more powerful than either of these is 
needed. 

It is not our purpose to develop the mathematics of hereditary systems, but 
we do wish to provide the abstract form of the functions defining the behavior 
of such systems because this, presumably, is the form that learning functions 
must take if the analogy proposed is valid. Consequently, here we present only 
the abstract equivalent to the actual mathematical expressions required. We would 
also like to contrast the form of functions that involve hereditary influences with 
those that do not. 

INTEGRO-DIFFERENTIAL EQUATIONS AS THE LAW 
FORM FOR LEARNING 

The abstract form of all hereditary laws, including learning, is that of an integro- 
differential equation. The general form of this equation is 

The hereditary influence is defined over the temporal interval from time s to time 
t, as associated with the occasions (a to b) when samples of the x-series are 
taken (e.g., from Trial a to Trial b). Here y(t) expresses the value of the behav- 
ioral variable (response characteristic) y observed at time t, whereas x(t) is the 
value of the dispositional variable x also at time t. The constant k scales the 
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initial value of the dispositional (state) variable (such as the elasticity coefficient 
or capacity to learn). Finally, K(t,s) is an integral transform called the coefficient 
of hereditary influence which acts over the interval from s to t (of the trials 
continuum) and determines the series of values x assumes over that sampling 
interval. This change in the x variable is measured in units x(s)ds. Such equations 
may describe a learning function when y(t) is, on the average, increasing, and 
a decay function (for habituation or fatigue) when y(t) is, on the average, 
decreasing. 

To simplify our presentation, we treat the integro-differential form algebra- 
ically in "operator" notation. An operator denotes a mathematical operation that 
converts one function, say x(t), into another function, say w(t). (Note that an 
operator is not itself a function; instead, functions are the "objects" of operators.) 
We use k as the special symbol for an operator. Using operator notation we can 
portray, abstractly, the major difference between the classical formulation of 
Hooke's law (Eq. 2) and the more general hereditary formulation known as the 
generalized version of Hooke's law. The major terms of this equation are rep- 
resented by the algebraic operators that act as place holders for integral and 
differential forms as follows: 

In this equation, K can be called a "hereditary transform of k." Equation 4 asserts 
that strain x (of, say, a simple spring) is not simply proportional to stress, as 
claimed in Hooke's original formulation of his law (Eq. 2), but instead depends 
on all the values that x assumed from the time of application of initial stress to 
the time now being considered. In other words, K is a series of values (perhaps 
nonlinear; see Appendix B) that must be added to k to change its course of values 
over time; this, of course, changes the series denoted by the independent variable 
X .  

With the hereditary formulations of Equations 3 and 4 in hand, the process 
of learning can at last be translated, through analogy, into a hereditary functional. 
For this analogy, learning situations may be viewed as placing a "stress" on an 
organism's general learning capacity (k), thereby causing a relatively permanent 
change in response tendency (y), as reflected in "strain" (average monotonic 
increase) of the relevant response characteristic (x), graphically shown as the 
amplitude of the learning curve. The hereditary influence, designated by the 
transform K, represents the cumulative effect of learning to learn over the series 
of trials; an effect not explained by the facilitative stress applied on each indi- 
vidual trial. 

We urge learning theorists to consider adopting a hereditary law form for 
learning functions. No one can yet tell whether hereditary law forms will prove 
more adequate than their predecessors. We believe they will, because they can 
express the rather peculiar circularity (nonlinearity) of dispositional variables, 
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like k ,  being dependent on the behavioral variables that they help to determine. 
Such "circular logic" (Turvey, Shaw, & Mace, 1977) for nonlinear learning laws 
stands in sharp contrast to the more traditional, "one-way" transitive logic of 
the classical attempts to formulate linear laws for learning. The potential power 
of the circular transitivity of the laws of hereditary mechanics is much like the 
recursive power of ruledefined learning functions favored by cognitive approaches 
that attempt to model learning formally, or by computer-driven simulation pro- 
grams. We favor the hereditary functional formulation over the recursive rule 
formulation, because it permits the search for laws of learning to continue as an 
extension of the classical tradition while maintaining close ties, without reduc- 
tionism, to other sciences (e.g., physics) that may continue to function as useful 
resource fields for our test field of psychology. 

In the next section we discuss some more specific aspects of treating learning 
as a hereditary functional from the perspective of ecological psychology. 

THE ROLE OF COMPLEMENTARITY AND DUALITY IN 
AN ECOLOGICAL PSYCHOLOGY OF LEARNING 

An essential ingredient of an ecological theory of psychology, following the 
principle of organism-environment mutuality (Gibson, 1979;  TUN^^ & Shaw, 
1979), is the existence of a perception-action "loop" by which an organism is 
related to its environment. This mutuality principle asserts that an organism's 
perception of the environment provides control constraints for its actions, and, 
conversely, that an organism's controlled encounters with its environment (via 
its action system) provide constraints on the perceptual information that unfolds 
as a function of such encounters. 

In the language of control systems engineering (see Nagrath & Gopal, 1982), 
such a loop between two variable-state systems constitutes a duality (i.e., a 
mutuality of constraints) of controllab'ility and observability. Controllability is 
a property of a system when, given any initial state and any designated final 
state, there exists a time interval and an input that determine how the system 
moves from the initial state to the final state during the specified interval of 
time. Observability is a property of a system when, given any final state and 
any designated initial state, there exists a time interval and an output that deter- 
mine how the system moves from the final state to the initial state during the 
specified time interval. 

We have met this duality principle before in our discussion of the relationship 
between laws stated in the differential ("causal") forms of classical mechanics 
and in the integral ("teleological") forms of variational mechanics. The concept 
of duality is now sufficiently ubiquitous to call it a fundamental principle of all 
mathematical science. (See Lautmann, 1971; Patten, 1982; Shaw & Mingolla, 
1982; Shaw & Todd, 1980; Shaw & Turvey, 1981 for examples of its applicability 
in fields ranging from physics to ecology and psychology.) 

Duality and Ecosystems. Because an ecosystem consists of both energy 
interactions and information transactions between organisms and their environ- 
ment, one might argue that the principle of complementarity applies in psy- 
chology as well as in physics and biology. On the contrary, we suggest that in 
an ecosystem where perception and action are equal, concomitant, and intrinsic 
components, the principle of complementarity is usurped by the principle of 
duality. The principle of duality is the manifest constraint that permits an eco- 
system model to circumvent the principle of complementarity of energy and 
information by construing these two concepts as a duality rather than a dualism. 
The principle of complementarity asserts that living systems may not be ade- 
quately explained by the dynamical (rate-dependent) laws but also require infor- 
mation (rate-independent) rules as well. We see the need for these two modes 
of description most emphatically in the apparent dualism of the enzyme-folding 
(dynamical) process by which DNA molecules replicate as contrasted with the 
double-helical code that provides the informational constraints that guide the 
replication process (Pattee, 1979, in press). 

The concept of control, interpreted for ecosystems, corresponds to the means 
by which actions and perceptions are determined. Such means are the operators 
by which the organism processes energy to produce actions, on the one hand, 
and the operators by which the environment structures the energy distributions 
that are perceived, on the other. Let Kn and Kc designate the organism and 
environment operators, respectively, and x and y their respective energy inputs. 
The corresponding control equations are (y = K g )  and (x = K d ) .  

The concept of observable, interpreted for ecosystems, corresponds to the 
goals toward which actions are controlled and that perceptual information spec- 
ifies. An effectivity is a goal-directed function that an organism might, in prin- 
ciple, realize. When the goal-directed function is also determined by the 
environment, it is called an affordance. The "observable" properties of an eco- 
system are effectivities and affordances. Using this same operator notation, the 
information that renders each of these properties, observable can be given by 
(x = K'ny} for an effectivity goal and (y = K'g) for an affordance goal, when the 
energy control equations are also given. Figure 10.1 illustrates how the energy 
support for perception and action (control) and the information specification of 
affordances and effectivities (observables) come together to define an ecosystem 
as a closed loop over a pair of dual external states. 

An ecosystem requires four equations for its complete specification: a pair of 
dual energy equations that are dual to a pair of dual information equations. Table 
10.1 presents these equations in their generic integro-differential form (in contrast 
to their operator form as in Fig. 10.1). Because these equations involve hereditary 
transforms (Kn, K,:, K'o, G),  they express the generic form of the hereditary law 
governing an ecosystem's history of energy interactions and information trans- 
actions. The operators designated by the asterisks denote the hereditary trans- 
forms of integrals that specify information transactions, and that run temporally 
counter to the causal direction of energy interactions (represented by the integral 
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I. ENERGY (CONTROL) DUALS 

a, INFORMATION (OBSERVATION) DUALS 
FIG.lO.l Diagram of the energy (control) and information (observation) duals 
shown in operator notation. The corresponding equations (denoted in parentheses) 
for perception and action are given in Table 10.1. 

TABLE 10.1 
Table of Duals 

Perspective Duals 
Organism-Perspective Environment-Perspective 

(Action) (Perception) 
I 

Energy 1 (Control) 1 YO) = J[ Kc (1,s) ds)ds 10) = [' Kc ( t d  yis-lds 1 - 

3 (Equation I) (Equation 11) 
8. I 
E Information 

(observation) 1 d t )  = f lr' <s)ds YW " f Ki (SJ) X(S)~S 
(Equation 111) (Equation IV) J 

Note: The symbols in these equations are explained in the text in connection with Eq. 3. The 
transforms whose kernels take the form K(t,s) designate "past pending" integrals that sum energy 
interactions from some past state (s) to some future state (0 .  By contrast, those with kernels of the 
form K*(st) designate "future tending" integrals that sum information transactions from some 
potential future goal state (t) "backwards" in time to some current state (s). 
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equations whose operators have no asterisks). These dual information and energy 
integrals express a temporal symmetry analogous to the temporal contrast expressed 
by the equations of variational and classical mechanics, for there are both future- 
and past-pending forms. Where the energy integrals (Eqs. I and I1 in Table 10.1) 
express the means by which energy interactions between an environment and an 
organism provide the "drive" for the action and perception systems, the infor- 
mation integrals (Eqs. Ill and IV) specify the effectivity and affordance "goals" 
that the information transactions signify. 

Nature must allow organisms to solve this predicament: Given a certain need 
state, how can an organism being showered only with the present energy (time- 
forward) interactions reach a stipulated future goal state in an optimal fashion? 
The answer is that it cannot! Intentional behaviors cannot be reduced to causal 
relations. Rather, the organism must learn to use hereditary influences and current 
information (time-backward) transactions to guide it optimally toward the required 
goal state. The arguments raised by supporters of ideological views against the 
causal approaches of classical mechanics and reinforcement theories were not 
so much off the mark as merely one-sided. Neither variational nor expectancy 
theories alone can be complete: A theory that incorporates the causal and inten- 
tional, energy and information, as dual forms of the same law, however, might 
be complete or, at least, completable in principle. 

Because the four equations in Table 10.1 are intrinsically related by duality 
operations, the ecosystem can be said to be self-controllable and self-observable. 
These four equations in concert provide us with the two coordinated series needed 
for learning. Hence, if these series have solvable equations, then, contrary to 
the complementarity perspective, the learning functional coordinating them exists. 
If we identify the learning functional with the dual equations (Eqs. I and 111) 
having KO as an operator, the composite functional provides a rigorous charac- 
terization of action (response) learning: With the dual equations (Eqs. I1 and IV) 
having Kc as an operator, it provides a rigorous characterization of perceptual 
learning. 

Presumably, the overall learning series requires the sum of the hereditary 
influences of both perceptual learning and action learning: a summation per- 
formed by the learning functional. We might consider learning over the coor- 
dinated series to be complementary such that: 

( K , , x + K e y = l )  for O Â £ K o < K  or O Â £ K e < K o  (5) 

Learning with respect to Equation I might be interpreted as improvement in 
biomechanical coordination so that energy resources are optimized. By contrast, 
learning with respect to Equation I1 might be interpreted as improvement in 
perceptual strategies producing a refined use of the energy patterns required to 
orient and detect. Similarly, learning with respect to Equations 111 and IV pertains 
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to the selection of optimal paths from potentially attainable effectivity and afford- 
ance goals through the state-space of subgoals that define the current action state 
and perceptual state of the system, respectively. These four kinds of learning 
might contribute differentially to the overall change in response characteristics. 

The amount of variance explained by each of these series can be experimen- 
tally ascertained by within-subjects designs with repeated measures where the 
subjects are brought to criterion on the perceptual displays incorporated in the 
learning, as contrasted with a similar design where subjects are permitted practice 
on the response measure. Overall, then, the process of learning will include 
three fundamental sources of variance: the dual (energy and information) per- 
ceptual learning series, the dual (energy and information) action learning series, 
and the learning-to-learn contribution over each of these series. 

SUMMARY AND CONCLUSIONS 

Learning theorists were once content to adopt the linearly causal law forms 
developed by traditional physics. Later, after seeing the failure of such law forms 
to explain all kinds of learning, andunder a variety of incisive criticisms (see, 
e.g., Hinde & Stevenson-Hinde, 1973; Johnston, 1981; Seligman and Hager, 
1972), many learning theorists abandoned altogether the quest for laws in favor 
of rule descriptions for learning functions. In this chapter we have offered reasons 
for reconsidering the case for learning laws. Let us close with an assessment of 
the formal analogy between our test field (learning) and our resource field 
(mechanics). 

Our historical junket (Appendix A) has revealed considerable support for the 
proposed analogy between physics and psychology. The validity of the analogy 
is seen to be a consequence of a shared belief that laws are desirable, attainable, 
and capable of rigorous formulation. We have argued that strong analogical 
connections arose because of the mutual desire to formulate law-based equations 
in both fields. Both fields tacitly assumed that such laws must take on the analytic 
forms developed by classical physics: the familiar differential or integral forms. 
This analogy was strengthened by noticing that reinforcement theory stands to 
classical mechanics on the "causal" interpretation of differential forms as expect- 
ancy theory stands to variational mechanics on the "teleological" interpretation 
of integral forms of law (see Appendix A). The discovery of hereditary (dissi- 
pative) phenomena, not expressible in either of these forms alone, led us to 
consider the hybrid integro-differential forms required to express the laws of 
hereditary mechanics: laws that incorporate the historical series over which initial 
conditions are "updated" to reflect hereditary influences. 

Acceptance of the proposed analogy between learning theory as our test field 
and hereditary mechanics as a resource field entails serious consideration of the 
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integro-differential form as the law form appropriate for modeling learning func- 
tions. Because learning acts as a hereditary functional over trials, as evidenced 
by learning to learn, rather than as a simple linear function, only this law form 
can fully justify the drawing of learning curves. 
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APPENDIX A 
Analogical Law Forms in Physics and Psychology 

The classical period of mathematical analysis, thC 17th and 18th centuries, gave 
birth to the optimistic view that physical science could soon be completed with 
mathematical rigor and its foundations secured with axiomatic certainty. Near 
the end of this period, Lagrange (1788) was confident enough to boast in his 
highly influential book, Micanique Analytique, that he had developed Newton's 
mechanics to such a high state of mathematical rigor that he had banned forever 
from science the need for diagrams and (therefore) geometric intuition. 

In the mid-20th century a similar optimism regarding the role of mathematical 
rigor in defining deterministic laws was entertained by learning theorists. Was 
there good reason for this similarity in scientific attitudes shared by physicists 
during the classical period of mechanics and psychologists during the classical 
period of learning theory? Why do scientific determinism and mathematical 
absolutism go hand in hand? 

Analytic Functions as the Classic Law Form 

Mathematicians of the 17th and 18th centuries knew only of functions that were 
analytic, a property of being represented by a convergent Taylor series: a par- 
ticularly simple kind of series, known as the power series, which always con- 
verges (has a limit) over a continuous range. Consider the infinite series, 

in which ao, a' ,  a*, .. and k are arbitrary, fixed finite numbers, and x is variable. 
Note that the series is based upon successive integral powers of (x - k)"-hence 
the name "power series." The power series always converges for the value x = k 
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because it then reduces to its first term, a,,. The series may also converge for 
other values of x, thereby defining a continuous range of values of x with the 
point x = k occupying the center of the range. Within this range, the power series 
defines a continuous function whose derivatives are all continuous. 

Because all functions dealt with by mathematicians of this era were expressible 
in terms of such series, they erroneously concluded that all mathematical func- 
tions were necessarily analytic (i.e., were expressible in terms of infinite series 
that are both convergent and continuous). It scarcely need be noted that geometric 
curves can be drawn using the Cartesian method to represent such functions 
graphically rather than numerically. 

For the classical physicist, the belief that series of observations or measure- 
ments could be presented graphically via the Cartesian method, and that all such 
functions so represented could be expressed by Taylor series, gave mathematical 
expression to a strict determinism. Given a small set of observations, predictions 
and postdictions could be made by means of geometric intuitions or (later) by 
the rigorous application of the technique of analytic continuation. Hence the 
very concept of being determined by law became synonymous with being expres- 
sible by analytic function. 

It should be obvious that an implicit, if little discussed, assumption that 
learning functions must be analytic functions (i.e., that learning series are Taylor 
series) lies behind the construction of learning curves: For how else could one 
justify extrapolating from discrete data points to a smooth continuous curve that 
converges on some criteria1 value as its limits? Little wonder then that a similar 
attitude of strict determinism prevailed among learning theorists of the mid-20th 
century, and that discovering laws of learning became synonymous with for- 
mulating the learning function in an analogous analytic manner. 

For the process of drawing continuous curves from discrete data points to 
have greater justification than simply geometric intuition or ill-founded conven- 
tion, another property of analytic functions must hold for learning: the property 
of analytic continuation. Gestalt psychologists recognized this property as a 
perceptually based, geometric intuition they called "good continuation," whereby 
any curve or line "carries its own law within itself' (Koffka, 1935, p. 175). This 
geometric intuition can be understood in a more rigorous fashion when expressed 
in terms of analytic functions. 

The perceptual tendency to continue a curve from an arc can be attributed to 
the fact that a small arc generatively specifies a longer curve. An arc is math- 
ematically equivalent to an interval of all values of x for some analytic function 
f i x )  from which the derivatives specifying a longer Taylor series may be extracted 
(d'Abro, 1951). Thus the Gestalt law of good continuation, intuitively used in 
the extrapolation of learning curves, has a legitimate basis so long as the curves 
are analytic and the series upon which the curves are based determine Taylor 
series. The analogy developed here between classical mechanics and learning 

theory is neither superficial nor accidental but is grounded in a common assump- 
tion that laws are deterministic because they involve functions that are analytic. 

Causal a n d  Teleological Determinism in Physics a n d  
Psychology 

In classical mechanics, the laws of motion and change may be expressed in 
either of two ways: as differential equations that describe the process as it unfolds 
over time, or as integral equations that describe the complete time course of the 
process. The differential form of a law assumes that the process unfolds with 
infinitesimal continuity from a preceding state to its next successive state. For 
this reason, it is assumed to be expressing the dynamic laws of a system in terms 
of efficient cause (cause and effect). The integral form of the same process, 
because it defines each intermediate state in terms of the total process, can be 
seen as expressing the dynamic laws in terms of final cause. Mathematically 
speaking, these two forms of expressing dynamic laws yield identical quantitative 
results. Furthermore, the two methods are just complementary expressions of 
the fact that a system's continuous change or motions trace a continuous curve 
in space over time so that, given any intermediate arc of the curve, the procedure 
of analytic continuation (in principle, but not always in practice) allows the arc 
to be extended either backward or forward in time. 

This property accounts for the reversibility of the laws of classical mechanics 
(cf. Overseth, 1969). These laws treat change in state of a mechanical system 
in terms of an infinite chain of states with infinitesimal links, where the direction 
of motion of the system with respect to time depends only on whether a past 
(initial) or future (final) state is specified. The same laws, therefore, permit two 
opposing philosophical interpretations of strict determinism: causality when the 
direction of change is fore, and teleology when the direction is aft. Either 
interpretation is mathematically legitimate because the laws are taken to embody 
change as an analytic function. Thus, the causal and purposive outlooks on 
physical reality are but complementary aspects of the mathematics selected to 
describe strict determinism. 

That the philosophically complementary views are a consequence of the math- 
ematics selected rather than the physics employed suggests that analogous con- 
sequences should be found in other sciences that (implicitly or explicitly) adopt 
similar mathematical methods for treating change as strictly deterministic. Clas- 
sical learning theory offers just such an analogous case. 

Classical theories of learning (e.g., those of Hull, Skinner, Thorndike, and 
Tolman) differed with respect to what conditions are required for learning to 
occur but tacitly agreed that the learning function can be graphed as a curve in 
the Cartesian manner. Behind this assumption sits the deeper assumption that 
learning curves are justified because they are analytic and, therefore, that strict 
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determinism under the stipulated laws follows. In addition, the laws of learning, 
whether based on the belief in the necessity of reinforcement or mere continuity, 
were believed to be universal in two senses: in holding (1) over all contexts, 
and (2) over all stimuli and responses. Regarding this latter universal property, 
sometimes referred to as the "assumption of equipotentiality," Bolles (1975) 
observes: 

To be sure, it has always been recognized that some stimuli may be more salient 
or more vivid or have more ready access to the sensorium that others, and some 
responses may have had a higher initial rate of occurrence than others, but these 
considerations were always of minor theoretical importance. They only meant that 
in a given application learning might start at a different point on the curve, but 
all learning followed the same basic &me.  (p. 253, our emphasis) 

The implication that various types of learning may be abstractly equivalent 
in the sense of following the same curve clearly supports the contention that the 
learning series defines some mathematical function. That in spite of differences 
in application learning might be considered to start at different points on the 
same curve suggests that the function in question has the analytic property 
required for continuation. If so, then like classical physics, there should be two 
equally legitimate, mathematically complementary, alternative forms that the 
laws of learning might assume, each of which expresses a different temporal 
direction for determinism. 

The two contrasting views are of course the reinforcement view and the 
expectancy view. Where Thorndike, Hull. Skinner, and other reinforcement 
theorists sought a system of empirical laws to explain later behavior in terms of 
past elements in a learning series, Tolman and other expectancy theorists sought 
laws to explain the association of prior elements in the series in terms of the 
"purposive" relationships to anticipated (future) elements in the series. Thus, as 
in the case of classical mechanics, the learning laws also took two forms: a 
differential (reinforcement) form that is past pending in that the future state of 
a learner depends on its past schedule of reinforcing events, and an integral 
(expectancy) form that is future tending in that the significance of experience is 
determined by the future usefulness of the expectancies created by this experi- 
ence. For instance, in a contemporary version of the law of effect, Hennstein 
(1979) has used a differential law form to predict the (behavioral) effects of 
reinforcement. 

We have painstakingly drawn the analogy between classical mechanics and 
classical learning theory partially in order to prepare the way for understanding 
the current controversy between ecological psychologists with their penchance 
for law-governed learning, and the cognitive scientists with their rule-governed 
view of learning. Just as the attempts to give the same sort of rigorous formulation 
to laws can account for the mathematically complementary but philosophically 
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opposing views, we propose that the current debate in both physics (see Pattee, 
1979, in press) and psychology (e.g., Fodor & Pylyshyn, 1981; Turvey et al., 
1981) over rule-governed versus law-governed views of phenomena can be best 
understood as a continuation of the analogy. This thesis can be supported, and 
the analogy strengthened, if both physics and psychology not only encounter the 
same difficulty in adhering to strict determinism as spelled out with analytic 
precision but seek resolution of the difficulty by drawing on the same formal 
means. There is reason to believe this is the case. 

The Problem of Nonanalytic a n d  Discontinuous 
Functions 

To the extent that dynamic law proved analytic, physicists could ignore the 
causal and teleological interpretations of law, because on purely quantitative 
grounds it made no difference. But if one of the two properties required for such 
functions to be considered analytic (i.e., continuity and convergence) failed to 
hold, how could the corresponding law be rigorously formulated? If the data 
series derives from a discontinuous function, how can curves be extrapolated to 
make either predictions or postdictions? Likewise, if the series is continuous but 
fails to converge, how can derivatives be taken or integrations formed? 

Although the functions dealt with by 17th- and 18th-century physicists in 
mechanical problems were typically analytic, many nonanalytic functions are 
encountered in physics. A classic example is the vibrating string. There is no 
analytic series that allows the V-shaped form of the string when plucked to be 
continuously mapped on to the other curves the string exhibits during its vibration. 
(In the mid-18th century, Bernoulli proposed a nonanalytic series of curves to 
handle this problem.) Likewise, the classical physicists assumed that essentially 
a physical change might involve continuous change and, therefore, that all 
functions underlying laws of change might be modeled (piecewise) by continuous 
functions. This turns out not to be the case: Rubber bands stretch and break, 
beams buckle, ice expands and cracks, and so on. Continuous variation, if 
pursued too far, inevitably leads to discontinuous changes in state. The 19th- 
century physicists were well aware of the need to address all such phenomenon 
but were not equipped with the appropriate mathematical tools for doing so. 

Later, it was shown that certain restricted classes of discontinuous curves 
could be represented by Fourier series. Also, a formal understanding of some 
discontinuous series not integrable by Newton's method was provided by Rie- 
mann and Lebesque. Contemporary research in differential topology (e.g.. catas- 
trophe theory and bifurcation theory) provides even greater understanding of 
such functions. 

The discovery of the limited applicability of analytic function theory to numer- 
ous physical changes forced mathematicians to recognize that the unity, sym- 
metry, and completeness of relation between function and series were still wanting. 
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This forced them to liberalize the denotation of function along lines proposed 
by Dirichlet (see footnote 1) .  As argued earlier, adoption of his proposal that a 
function need not be analytic but might be a rule defined a branch-point in the 
history of attempts to give rigorous characterization to all functions. Rules may 
be formally rigorous, but they are not mathematically rigorous in the analytic 
sense originally intended. 

During Dirichlet's era the only analytic forms for functions were the differ- 
ential and integral forms. Hence, these were the only tools available to model 
laws. Physics needed laws, however, that went beyond these two forms. Thus, 
from necessity (the mother of invention) they became willing to entertain, for 
the first time, rule-defined laws (e.g., the so-called "delta" operators of Kronecker 
and, later, Dirac). With this innovation, three forms emerged for laws: the 
differential form, the integral form, and now the (recursive) rule form. 

It is not too surprising, therefore, that with the recognition of discontinuities 
in learning series, such as in learning with prolonged delay of "reinforcement" 
(Andrews & Braveman, 1975; Garcia, Ervin, & Koelling, 1966), psychologists, 
like physicists, should also entertain nonanalytic characterizations for functions 
and should realize that learning rules should vie for dominance over learning 
laws. What analytic alternative was there? 

Actually, there is an analytic alternative by which certain discontinuities in 
series might be modeled in a lawful manner without invoking nonanalytic rules; 
or, at least, by which such a breach in tradition might be forestalled: the integro- 
differential form compounded from the other two analytic forms; that is, perhaps 
laws should be considered as functionals rather than functions. This was Vol- 
terra's strategy, and the one we are endorsing. Whether it will prove to be only 
a means for postponing the inevitable remains to be seen, but at least the strategy 
deserves serious consideration because the rule strategy aborts the search for 
laws in favor of the search for mechanism. These are not equivalent theoretical 
goals, for rules require embodiments whereas laws do not (Feynman, 1965). 
The search for the mechanistic embodiments of laws has been fruitless in the 
extreme, as witness the history of failures to find convincing evidence for the 
mechanistic embodiments of laws of the electromagnetic field (ether), combustion 
(phlogiston), and motion (impetus). 

APPENDIX B 
Nonlinearity in the Learning Functional 

Two independent variables are nonlinearly related if the course of values of one 
is constrained by the course of values assumed by the other; that is, of one of 
them appears in the argument of some more general function, whereas the other 
appears as a value in the range of that more general function. The subtlety is 
that whereas the pair of functions may be linear, the functional that relates them 

may be either linear or nonlinear. For instance, each value of k plays a linear 
role in determining the magnitude of the stress (restorative force), x ,  for a given 
strain, y ,  of a spring, and each stress value (x )  plays a linear role in determining 
the magnitude of the strain. This is in accordance with the linear form of Hooke's 
law where k is treated as a constant because it is assumed to be independent of 
strain (y). Still, over the history of its use the strain variables (frequency and 
magnitude of strain) constituting y determine a nonlinear influence on the future 
course of k values and require, therefore, a generalized form of Hooke's law 
that is nonlinear. Thus, two linear functions may add up to a nonlinear functional! 

We expect learning to be equally complex (i.e., a nonlinear hereditary func- 
tional). In fact, Grossberg (1980) has found it necessary to use nonlinear func- 
tional~ in the design of neural nets that exhibit interesting forms of cooperativity 
and competition: a kind of learning. Because the hereditary influence (K) over 
learning series may not be linear, the learning functional (y) probably requires 
a hereditary law that is the sum of a linear function x and a nonlinear function 
K .  

A simple test of linearity requires that 

If the learning-to-learn (or fatigue) effects introduce a nonlinear dissipative 
parameter such that 

fcc + K - y = d > 0 (or d < 0 for fatigue), 

then the coefficient d provides a measure of the linear deficiency of the equation 
for the learning functional. Under such circumstances, the learning series would 
correspond to a nonlinear Volterra series defined over a set of simultaneous, 
multiple integral equations: 

m times 

In abbreviated operator notation Eq. 6 is represented by: 

v = foe + K ,  + K, + + K,,,. (7) 

From a computational viewpoint, this means that after solving for the learning 
function v on trial n < rn in a series of rn trials, the entire computation must be 
repeated if the learning effect on n + 1 trials is desired. Hence, to determine the 
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hereditary influence of K m ,  one must solve for K , ,  K , ,  + K 2 ,  ..., K ,  + ... + 
K m -  ,. Little wonder that the laws of hereditary mechanics and learning may be 
difficult to formulate, their corresponding functionals hard to express, and the 
exact nature of the underlying data series as discretely sampled not readily 
revealing. 

Furthermore, the theory of nonlinear integro-differential equations is still 
incomplete and no generalapproach yet exists. However, approaches do exist 
for determining the integrability of simple nonlinear series (e.g., Volterra series). 
Nonlinear Volterra series have been required for adequate characterization of a 
wide range of systems that exhibit hereditary effects, including pupillary reflexes 
(Sandberg & stark, 1968), irradiated tissues (Iberall, 1967), competing popu- 
lations of neural cells (Grossberg, 1980), and automatic control systems (e.g., 
Tsypkin, 1973). Consequently, one should not be surprised that so ubiquitous 
a strategy might emerge again in human and animal learning. If so, then psy- 
chologists, like the physicists, would be wise to incorporate integro-differential 
equations into their theories of learning and to admit openly allegiance to hered- 
itary mechanics. 
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