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3 cases occur when the person doing the reasoning is not aware that he
's any relevant general principles. What in fact happens, we believe, is two
s. First there is something akin to our mayonnaise example: reasoning by
gy. Second, comes the examination of several examples and a generaliza-
A general principle can be considered to be one in which the schema has
- of its constant terms replaced with variables (the variables will have
raints placed upon the set of concepts which may be used to fill them).

: process by which one takes specific knowledge about a particular instance
soncept or of an experience and generalizes it to apply to a larger class of
iences is one that needs a good deal of study. One suspects that this
alization process is at the heart of much of our everyday operations in
1 new situations must be dealt with by the experience gained from old ones.
ding by analogy, learning by modification of existing schemata, the use and
rretation of metaphor, and functional reasoning would all appear to be
d examples of this generalization of knowledge. As we gain in our under-
ing of the structures of human memory and in the ways by which the
ledge structures are acquired, modified, and used, we will come to enrich
nderstanding of learning, of teaching, and of the human use of knowledge.
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INTRODUCTION

The task of developing a psychology of instruction is formidable because we
must first understand the nature of knowledge, how it is acquired, under what
conditions it might be taught, and the signs by which its attainment might be
celebrated. Of course, our task would be foredoomed if every area of knowledge
were so distinctive in its requirements on the human mind that completely
different cognitive processes were invoked in each case. If so, then the most help
educators might realistically expect from psychologists would be a pluralism of
principles consisting of independent sets of heuristic tricks, especially tailored
for each area of pedagogical focus.

Clearly, the working hypothesis which best serves both psychology and educa-
tion assumes that knowledge-gathering processes of mind are essentially the same
across all disciplines, that any differences will be in detail rather than principle.
Let us then begin by posing the central problem for a cognitive theory of
instruction in a way that presupposes this working hypothesis: what is the
nature of the general cognitive capacity that underlies all knowledge acquisition?
It is to this question that this chapter is addressed.
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THE ABSTRACT NATURE OF CONCEPTS

A basic characteristic of human intelligence is the ability to formulate abstract
conceptual knowledge about objects and events. Abstract conceptual knowledge
is exemplified when we can deal appropriately with novel instances of a concept,
that is, when our knowledge goes beyond just those instances experienced.

There is abundant evidence that our knowledge of language must be abstract
given the novelty that must be dealt with. Indeed, the role of novel events in
language has long been recognized by linguists. Sentences are almost always
novel events. To verify this fact you need only pick at random a sentence in a
book and then continue through the book until the sentence is repeated. Unless
you have picked a cliché or a thematic sentence, it is unlikely that the sentence
will reoccur. We readily admit that most sentences are novel, but what about the
elements from which sentences are constructed? These elements must be the
same in order for us to understand sentences. Further examination, however,
shows that words too are typically novel events. The apparent physical sameness
of words is an illusion supported by the use of printing presses. If we consider
handwriting, we find a great deal of variation in the construction of letters and
words. The novelty of words becomes even more clear when we think of the
same word spoken by different speakers, male and female, child and adult, or by
the same speaker when he is shouting or whispering. Words, like sentences, are
typically novel events. To say that words are novel events may be incorrect in
some instances. We have heard our friends use the same words many times, our
own names being a case in point. The importance of the argument for novelty is
to illustrate that this repetition is not necessary for our understanding of words;
thus our ability to recognize words is not a function of having experienced that
particular physical event before.

Greenburg and Jenkins (1964) demonstrate an even more striking example of
the capacity to deal with novel instances of a class. They found that English
speakers could deal appropriately with novel sequences of English phonemes.
Sequences of Phonemes in English are subject to powerful constraints described
by rule structures for syllable and word formation. If we randomly sample
strings of English phonemes we will produce three types of strings: strings which
are actual English syllables or words; strings which violate the rules for English
syllables and word construction and therefore are not English syllables or words;
and finally, strings which are in accord with English rule structure, but are not
found in English. Given only consonant-vowel—consonant (CVC) strings we all
recognize cat as an actual English word and cah as clearly not an English word.
However, what about the strings dib and lurt? Both of these CVCs are in accord
with English rules of syllable construction. Dib is in fact an actual English word.
Consequently, Greenberg and Jenkins constructed a measure of distance from
English, based upon the rules of English syllable construction, which accurately
predicted subjects’ judgments of novel strings of phonemes. The subjects’ judg-
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ments about novel strings of phonemes were consistent and predictable on the
basis of linguistic rules for syllable construction in English.

This research clearly demonstrates that the knowledge, on the basis of which
English speakers recognize and construct English syllables and words, is abstract
in the sense that it is not knowledge of particular physical events, but rather
knowledge about systems of abstract relationships. One’s ability to recognize
sequences of phonemes not experienced before as acceptable or unacceptable
English strings demonstrates knowledge of rules of sequencing of phonemes, that
is, abstract conceptual knowledge which allows us to recognize and produce
novel events.

But phonemes too are abstract classes of events which cannot be specified in
terms of common physical elements. Research in the perception of speech has
shown that the same phonemes are specified by different physical events in
different contexts and that the same physical event can specify different pho-
nemes in different contexts (Fant, 1964; Liberman, Cooper, Shankweiler, &
Studdert-Kennedy, 1967). So, with phonemes too, the basis of recognition is
knowledge of a code or system of relationships, not knowledge of particular
physical elements. As we have seen, breaking language events into smaller and
smaller elements does not result in a level of analysis based upon particular
physical elements. Rather, at each level we find still another system of abstract
relations which is necessary to specify the nature or meaning of particular
physical events. .

Similarly, we are able to recognize a melody played on a piano even though
previously we have only experienced instances of that melody played on other
instruments, or by an orchestra, or even hummed. To do so, therefore, we must
have an abstract concept of the melody that specifies the isomorphism existing
among the various instances. Often we are able to recognize that a painting is
executed in the style of impressionism or by a particular artist, say Cezanne,
even though we have never seen that particular work before. To do so we must
have an abstract concept that specifies the style of the school or artist such that
the instances, novel ones included, are seen as similar. Thus, there seems to be
ample reason to conclude that concepts are not necessarily based upon knowl-
edge of particular physical events, nor upon physical units, elements, or features,
since instances of many concepts are only abstractly related.

GENERATIVE CONCEPTS

Due to their generality, abstract concepts apply to a potentially infinite equiva-
lence class of instances. However, this fact poses a serious problem for a
cognitive theory bent upon explaining how they are acquired. Since one’s
experience is with but a sample of the entire set of instances to which such
concepts refer, several puzzling questions arise: First, how can experience with a
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subset of objects or events lead to knowledge of the whole set to which it
belongs? There is a problem of explaining how some part of a structure can be
egual to the whole structure. Indeed, the claim that some can, under certain
f:ucumstances, be equivalent to all seems to involve a logical contradiction. That
it does not, fortunately for cognitive theory, can be amply illustrated in many
different areas of conceptual knowledge. In a moment, we will illustrate this fact
from examples drawn from three distinct fields—mathematics, linguistics, and
perceptual psychology.

A second crucial question that must be answered, given a precise answer to the
first, concerns the nature of the subset that can provide the knowledge necessary
to deal with the entire set. Will just any subset of instances do, or must the
subset be a certain size or quality? In other words, how do instances of a
conce.pt qualify as exemplary cases of the concept? A precise answer to this last
question has quite obvious implications for the selection of effective instruc-
tional material for teaching concepts.

.Generative concepts in mathematics. In mathematics the concept of an infi-
nite set provides a structure for which it is true that a proper subset is equal to
the total set. Cantor proposed this definition of the infinite when he discovered
that a subset of all natural numbers, such as the even integers, can be placed into
a one-to-one relationship with the total set of integers. But a more relevant case
for our purposes is the problem of providing a precise description for an infinite
class of objects. By a precise description is meant a finite specification of every
instance of the infinite class.

A moment’s reflection suffices to conclude that so-called nominal concepts are
guite inadequate for this purpose since it is impossible to ostensively define an
infinite class, say by pointing to each element. Hence the label “infinity” could
not be consistently applied since finite enumeration will not discrimate between
classes just a little larger than the ostensive count and ones infinitely larger.

For similar reasons so-called attributive concepts of infinite classes are not
possible since the attempt to abstract common features from all members of
such classes fails. If not every member of an infinite class is surveyed by a
process of finite abstraction, then a potentially infinite number of cases may
exist which fail to exibit the attribute common to the finite subset actually
experienced. Thus, the learning of concepts that refer to classes with a poten-
tially infinite number of members such as trees, people, red stars, cannot be
adequately explained by a cognitive process involving finite abstraction. The
process of abstraction postulated to explain the acquisition of abstract concepts
must work in some other way. As a mill for abstract knowledge, it must take a
finite set of exemplars as grist for producing concepts of infinite extension.

This problem has perplexed philosophers for many centuries, leading some
?mpiricists and nominalists to propose that in fact no concept of an infinite class
is really possible. Their argument was based upon the belief that since finite
abstraction is the means by which all concepts are formed, then the concept of
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the infinite must be a negative concept referring only to our ignorance regarding
the exact size of a very large class which had been indeterminately surveyed by
the senses. This belief constitutes a refusal to recognize the creative capacity of
human intellignece and led the empiricists to a theory of knowledge founded
upon associative principles—principles which define knowledge as nothing more
than the association of memoranda of past sense impressions—what Dewey
(1939) rightfully called “dead” ideas because they cannot grow.

Infinite structures can only be represented by finite means if the finite means
are creative, in the sense that a schema exists by which the totality of the
structure can be specified by some appropriate finite part of the structure. Such
a schema by which the whole can be generalized from an appropriate part can be
called a generative principle, while the appropriate part can be called a generat-
ing substructure or just generator for short. That a structural totality can be
specified by a generator plus a set of generative principles can usually be verified
by the principle of mathematical induction.

Consider the problem of how one comes to know the concept of natural
numbers. Two stages seem to be involved: one must first learn the set of
numerals 0, 1,2, ...,9 as well as a system of syntactic rules by which they may
be concatenated to form successively ordered pairs (e.g., 10, 11,.. ., 99), triples
(e.g., 100, 101,... 999), etc. The number of numerical strings is, of course,
potentially infinite. Hence the numeral set 0, 1, 2,..., 9 constitutes the
generator which potentially yields all possible well-ordered numerical strings
when the appropriate generative rules of the grammar are applied.

The second stage in acquiring the concept of natural numbers entails inter alia,
not only knowledge of the grammar for numerical labels, but knowledge of the
closure of arithmetic operations by which () any number can be shown to be a
logical product of an arithmetic operation applied to a pair of numbers e.g., 1 +
0=1,1+1=2,1+2=3,...,and (b) any logical product of numbers always
yields numbers.

Indeed, it does not take children long to realize that any combination or
permutation of the members of the generator set ©,1,2,...,9)yields a valid
number. For example, is 9701 an instance of the concept of natural number? Of
course, you will recognize it as a valid instance. But how do you know? Have
you ever seen this number before? Does it matter? Unless it is part of an old
phone number, address, or some serial number that you have frequently dealt
with, then you probably have no idea whether it is a familiar or novel instance of
the concept of natural number. Nevertheless, one knows immediately that it is
an instance, presumably because one’s knowledge of strings of numerals is as
abstract as that for English sentences.

Generative linguistic knowledge. A similar line of argument can be developed
with respect to the best way to characterize a speaker’s knowledge of his native
language. The problem is: “how do we actluire the linguistic competence to
comprehend sentences that have never before been experienced?” For instance,
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it is unlikely that you have ever experienced the following sentence: the impish
monkey climbed upon the crystal chandelier, gingerly peeled the crepes from the
ceiling, and threw them at the furious chef. This fact, however, in no way
diminishes your ability to recognize it as a grammatical, if novel, sentence.

Whatever the precise details, it seems clear that the child acquires generative
knowledge of his language from limited experience with a part of the whole
corpus that is potentially available. Furthermore, on the basis of this limited
experience, he is able to extrapolate knowledge about sentences never before
experienced by him, as well as knowledge about those never before experienced
by anyone.

Presumably, the child’s immediate linguistic environment consisting of his or
her family and local aspects of his culture, provides him with a generator set of
exemplary structures from which he educes the generative principles by which
all other sentences are known. Chomsky (1965) has argued that a transforma-
tional grammar provides the operations defining the mapping of the generator
set of clear case utterances onto the corpus of all utterances; other theorists
disagree. However, no one disputes the fact that the acquisition of language
requires cognitive schemata that are truly generative in nature.

It is also worth noting that during acquisition specific memory for sentences
experienced seems to play no necessary role in the process. Several lines of
research support this contention. Sachs (1967) demonstrated that subjects were
unable to recognize syntactic changes in sentences that did not change their
meaning as readily as they were able to detect changes in meaning. This suggests
that people often do not remember the explicit form of sentences experienced.

Other researchers (e.g., Blumenthal, 1967; Mehler, 1963; Miller, 1962; Rohrman,

1968) argue that rather than the surface structure of sentences being remem-
bered, it is the deep structural relations specified by current transformational
grammars that characterize the abstract conceptual knowledge retained in
memory.

One important insight that emerges from a study of such cases is that for
generative concepts there are no truly novel instances. There are only those
instances that are actual, because they belong to a generator set, and those that
are potential, because they lie dormant among the remaining totality of in-
stances. Consequently, the only difference between actual versus potential
instances is whether the instance has been made manifest by application of the
generative principle. Once done so, a newborn instance bears no marks of its
recent birth to denote that it is new rather than old.

If the above reasoning is valid, we are able to formulate our first empirical
hypothesis: if people obtain abstract concepts then they will not necessarily be
able to recognize novel instances of the concept as being novel; that is, instances
in the generator set of a concept (i.e., clear-case exemplars) will not always be
distinguishable from those instances never before experienced.
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In the next section we review some of the research recently completed at the
University of Minnesota which lends plausibility to the hypothesis that genera-
tive systems theory provides a precise description of the function of the
cognitive capacity by which we obtain abstract concepts.

EXPERIMENTS ON GENERATIVE CONCEPTUAL SYSTEMS

The problem of how people learn abstract conceptual systems is by no means
new to psychology. Sir Fredric Bartlett (1932), in his classic book Remember-
ing, realized that what people learn must be some kind of an abstract system or

schema rather than a discursive list of simple instances. Clearly concepts can be
learned from a small set of very special instances, what might be called proto-
types or exemplars of the concept. Considerable research has shown this to be
the case. However, in doing so some curious results were uncovered. Further-
more, the attempt to characterize precisely the nature of prototypic instances
sufficient for the learning of a given concept proved more elusive than expected.

Attneave (1957a) demonstrated that experience with a prototype facilitated
paired-associate learning involving other instances of the concept. In related
research Posner and Keele (1968) found that subjects were able to classify
correctly novel dot patterns as a result of experience with classes to patterns
which were abstractly related to the novel instances, i.e., related by statistical
rules rather than by feature similarity. Later, Posner and Keele (1970) isolated
the following properties of the conceptual systems which enabled subjects to
classify novel instances of the classes of dot patterns: (1) this conceptual system
was abstracted during initial experience with the classes of patterns, and (2)
although derived from experience with patterns, it was not based upon stored
copies of the patterns. One week after the original experience with the patterns,
the subjects’ ability to classify the patterns actually seen earlier had decreased,
while their ability to classify “new” prototypic patterns surprisingly had not.
This result supports Bartlett’s view by strongly suggesting that these “new”
instances were classified in terms of a highly integrated system of abstract
relations (a conceptual system) rather than being mediated at the time of
classification by memory of individual patterns.

The question then is: “how can a subset of instances of a class be used to
generate the entire class?” One avenue that we are investigating is to see what
insight the concept of group generator may give into the generative nature of
conceptual systems.

The notion of a group generator can be understood intuitively by carefully
studying the illustrations of the generator and nongenerator sets of stimuli used
in the experiment reported below, page 207. One should notice that the
generator set consists of cards whose relations define the displacements figures
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undergo when orbiting around the center of the card, that is, when the ordered
sequence of cards specifies orbiting. On the other hand, the nongenerator set of
stimuli consists of cards that are physically similar to those in the generator set,
differing, however, in that no sequence of these cards is sufficient to specify
the orbiting concept. At most they specify a displacement of four figures over
the diagonal path running from the upper left to the lower right hand corners of
the card.

In the next section a more formalized account of the group generator notion is
presented.

The Concept of Group Generator

Many examples of the generative property of mathematical groups exist. For
instance, for each integer n, it is possible to construct a group having exactly »
e})ements (a group of order n) by considering 1,a,4%,43,...,a" = 1 a™, where
a = a" =1 and the operation is ordinary algebraic multiplication. Such a group
is called cyclic because the initial element (2°) is identical to the terminal
element (a"); the symbol « is called a generator of the group, since every group
element is a power of ¢, thatis,aX a=a%,aX a® =a®, ..., aXa" 1 =q" =4°.

The (integer) representation of the concept of a group with a generator is but
one application of this abstract system. As another example, consider the
rotational (cyclical) symmetry of a square. Let each vertex of the square be
labeled (1, 2, 3, 4,) and represented as the bottom row of a matrix. Then let
each position initially occupied by these vertices be similarly labeled and
represented in the top row of the same matrix:

positions(P) (1 2 3 4)
vertices (V) 123949

We now define a 90° clockwise rotation of the square as follows:

< 1234\ 90° /1234
=
1234 4123
The 360° rotation of the square can be similarly represented as four 90°

rotations:

[ I 111 v I

1234)90°<1234>180°<1234270°1234360° 1234
- -> >
1 234 —4123 3412 2341*1234>

10. ABSTRACT CONCEPTUAL KNOWLEDGE ZUb

The configurations I-IV are the group elements representing all the possible
configurations of a square that can be generated by a product of 90° rotations.
This can be summarized in tabular form as follows:

X (1 II Oriv
|1 1 iIiIv
Irjm arivli

nmivi 1
viivi 1 im

From inspection of the table it is clear that I is the identity element and that
every element has an inverse, e.g., II X IV = I, HI X 1II =, etc. To illustrate the
group operation, (X), by which these products of rotations in the table above
were computed, consider the way in which one proves that the element IV is the
inverse of element II since their product II X IV yields the identity element I (a
0° or 360° rotation).

I v 1

1234\ 1234 <1234>
(4123/X<2341> 1234
In general, to multiply one array by another do the following: Replace the value
of the vertex in a given position in the first array with the value of the vertex
found under the position with the corresponding value in the second array. For
instance, in the above example, I X IV =1, the products are computed as
follows: V4 in P, of II is replaced by V; in P4 of IV; ¥V, in P, of Il is replaced
by V, in Py of IV, etc., where V; and P; denote the appropriate vertex and
position.

More importantly (for our purposes), the group of rotations for the square has
two generators, namely II and IV. Either of these, if multiplied iteratively by
itself, yields all elements of the group. Thus, I1* = IIL, II° = IV, =11 =1
and similarly, IV? yields III, 11, I, IV, respectively. This generative property is
not trivial since neither I nor I1I are generators of the group; I" =1 since it is the
identity and III" alternates between I and III, never producing Il or IV because
III is its own inverse. Many other groups have nontrivial generators. A most
important group is that of perspectives of solid objects. The fact that, for many
objects, a few perspectives provide sufficient information to specify their total
shape suggests a way in which perceptual systems, like conceptual ones, may be
generative. (Shaw, McIntyre, & Mace, 1974)
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The basic strategy for testing the applicability of the group-generator descrip-
tion in explaining generative conceptual systems is to construct acquisition sets
which either are or are not generators specifying the total class of instances
referred to by the concept. This suggests the following hypothesis:

If the information specified in the group generator acquisition set is
sufficient to allow subjects to generate the entire class, subjects should
then treat novel instances of the class in a fashion similar to the way they
treat experienced instances of the class, In contrast, the subjects who are
given a non-generator acquisition set should treat experienced and new
instances of the class differently.

A Generative Concept Experiment

To investigate the above hypothesis Wilson, Wellman, and Shaw constructed a
system consisting of four, simple geometric figures (a cross, a heart, a circle, and
a square) orbiting alone through the four corner positions of a square card. This
allows for the construction of sixteen distinct stimuli (i.e., four figures X four
positions = 16 cards). These sixteen cards provide the underlying set over which
the concept of orbiting can be defined by an appropriate ordering of the cards.
Moreover, the system of relationships among the cards determined by the
discrete orbiting of the figures, logically specify a group of transformations
(displacements) that is isomorphic with the geometric group of 90° rotations of
the square discussed earlier. By definition two specific groups (e.g., the orbiting
and rotation groups denoted above) are abstractly equivalent if some third group
can be found to represent each. The numeric arrays, I-V with the operation X,.
constitute such a group.

The sixteen cards which provide the underlying set for the “orbiting” group
can be represented by the numeric arrays I~V as follows: let the top row of the
array specify the corner positions on a stimulus card while the bottom row
specifies the figures that occur in those positions. In this fashion, the columns of
the arrays I-1V, reading from left to right, denote all sixteen cards in the set
underlying the concept of orbiting. In the rotation case, each relationship
between adjacent arrays specifies the new positions assumed by the vertices of
the square as it rotates discretely through 90°; by contrast, in the orbiting case,
the relationship between adjacent arrays now provides a summary of the new
positions assumed by each of the orbiting figures from card to card. In other
words, the orbiting of a figure can be thought of as a rotation around an axis
point outside the figure. Hence they have the same group multlphcatxon table
and are abstractly equivalent.

The sequence of cards specifying a generator for the 16-card set used in the
acquisition phase of the experiment for one group of subjects is shown in Fig. 1.

Notice that the first four cards constitute the columns of array I while the
second four cards constitute the columns of array II. To see that these eight
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F1G. 1 Group generator acquisition set. i 2 3 4

cards qualify as a generator for the total set of cards one need only multiply
them together in the iterative fashion as discussed earlier. By consulting the
group multiplication table one immediately verifies that multiplying array II (or
IV) by itself a sufficient number of times yields all the arrays, I-1V, and
therefore, is a generator for the total set of cards. Also by consulting the table,
one can verify that iterative multiplication of array III by itself yields only I and
1II and, therefore, does not qualify as a generator for the group of sixteen cards.

There is a sense, however, in which III is a generator that specifies an abstract
concept; namely, since the geometric figures occur in all four positions across
cards, if they are treated equivalently, then they do specify the entire set. In
order to minimize the degree of abstraction (i.e., generality) of the nongenerator
acquisition set, eight cards were selected in which the figures occurred in only
two positions, rather than four positions specified by III. This selection guaran-
teed that the nongenerator acquisition set could not specify the entire concept
(set) at any level of abstraction. (Although it does contain the generator for a
system of diagonal relationships.) The cards in this new nongenerator acquisition
set used in the experiment are shown in Fig. 2.

During recognition both groups were shown the eight cards they had experi-
enced during acquisition phus the remaining eight novel instances of the system.
Additionally, both groups were shown nine cards which did not fit the system,
that is, noncases. The noncases were constructed by using inappropriately
colored geometric forms, forms occurring in the center of the card, and forms
which were oriented differently on the card than those in the system, for
example, a 45° rotation from the perpendicular. The recognition set, therefore,
consisted of 25 cards, 8 “old” cards, 8 “new” but appropriate cards and 9
“noncases.” Subjects were shown each of the 25 cards one at a time and asked

FI1G.2 Nongenerator acquisition set.
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to rate each card as “old” or “new,” that is, as one they had seen during
acquisition.

As might be expected both groups consistently rated the old items as old and
identified the noncases as new cards. The generator acquisition set subjects rated
old cards as old on 80% of the cases and the noncases as new on 99% of the
cases.

The two groups were strikingly different, however, in their judgments of the
new but ‘‘appropriate within-the-system” cards. The “nongroup generator”
subjects correctly identified these new instances as new on more than 90% of the
cases. In marked contrast, the “group generator” subjects rated the new cards as
being old 50% of the time. That is, their judgments of the new but appropriate
instances were at a chance level. On 50% of their judgments, subjects identified
the novel instances of the system as cards which they had experienced during
acquisition. This group could clearly discriminate system from nonsystem cards,
as shown by their rejection of the noncases; but they could not consistently
discriminate experienced instances of the system from novel ones.

Two conclusions can be drawn from these results:

1. During acquisition subjects are acquiring information about the abstract
relations existing between the items in the acquisition set. That is, they are
gaining more information than can be characterized by copies of the individual
cards they experienced.

2. The information specified by the group generator is sufficient to allow
subjects to generate the entire system. This supports the claim that these
subjects’ knowledge of the system of orbiting cards is indeed generative.

The fact that subjects in the generator group could not consistently dis-
criminate between previously experienced and novel instances of the system,
strongly suggests that subjects are acquiring an abstract relational concept which
defines a class of events, not simply information about the specific instances
they had experienced. Furthermore, this result also suggests that these subjects
acquired a knowledge of an event (the orbiting of cards) that is truly generative.
(More about this type of event conception will be said in the next section.)

Assuming that subjects are acquiring abstract relational systems from experi-
ence with the generator acquisition set rather than specific memory of experi-
enced instances, the question arises as to the effect of more experience with the
acquisition set. Conceptions of memory based upon the abstraction of static
features, or copies of the experience events, would predict that more experience
with the acquisition set would facilitate subjects’ recognition of new instances of
the system as actually new, that is, as not before experienced. If, instead of
storing copies of the experienced instances or abstracting the common attributes
of the instances, subjects are acquiring information about the abstract relations
among these instances in the system, more experience with the acquisition set
would not necessarily result in an increased ability to recognize new instances of
the system as being novel. As subjects better acquire the abstract relational
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system they would be more able to discriminate instances of the system as being
novel. As subjects better acquire the abstract relational system they would be
more able to discriminate instances of the concept from noncases. However, the
novel instances of the system may be more difficult to discriminate as new
precisely because they are instances of an abstract relational system

To investigate this possibility, four additional groups were run, two with each
of the two types of acquisition sets. One group experienced the generator
acquisition set twice, and a second group three tirges. Similarly, a third experi-
enced the nongenerator acquisition set twice and the fourth group experienced it
three times. Following the acquisition phase, all groups were tested for recogni-
tion.

In the nongenerator groups, the greater amount of experience with the
acquisition Sef resulted in an increased ability to recognize the new instances of
the system as new. The subjects who experienced the acquisition set three times
were able to recognize the new instances as new on 100% of the cases. The
nongenerator subjects were able to consistently identify new instances of the
concept as new after one presentation of the acquisition set, and the subjects
given more experience with the nongenerator acquisition were even more accu-
rate in this discrimination. However, the results obtained with subjects who
experienced the group-generator acquisition set were quite different. Not only
were these subjects unable to identify novel instances of the system as new, but
additional experience with the acquisition set decreased the subjects’ ability to
recognize new instances as being new. As stated earlier, the subjects who
experienced the acquisition once accepted the new instances as old 50% of the
time. Subjects who experienced the acquisition set twice before recognition
identified the new instances as old on 75% of their judgments, and the subjects
who experienced the generator acquisition set three times identified the new but
appropriate instances of the system as old on over 80% of their judgments. All of
these subjects continued to correctly recognize the old instances as old and
reject the noncases as not before experienced.

These results provide strong evidence that subjects are acquiring information
about an abstract system of relations and not simply information about the
static properties or attributes of the experienced instances. If subjects’ judg-
ments were based solely upon the attributes or static features of the experienced
instances, the subjects would be able to recognize new but appropriate instances
as being new and increase experience should enhance this recognition. As we
have seen the results were not obtained. On the other hand, if subjects are
acquiring a generative conceptual system, then, instances which are appropriate
to the system would be recognized as familiar. As the abstract conceptual system
is better learned the subjects’ would be more likely to recognize novel instances
of the system as belonging to the system and, therefore, identify them as old.

; 1t should be noted that these data provide strong support for our hypothesis,
_namely, that knowledge of a subset of the instances of a concept was in fact
.tantamount to knowledge of all instances of the concept. When the system was
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well learned, subjects could not distinguish old from novel instances. Clearly,
experience with the group-generator acquisition set was in this case tantamount
to experience with the entire system.

Finally, it should be noted that in these experiments subjects were not
instructed to find relations between the individual instances, nor were they told
that they would be tested for recognition. Rather, subjects were instructed that
we were studying short-term memory of geometric forms. Their task was to
reproduce, by drawing each card in the appropriate acquisition set after per-
forming an interfering task. In this case, the abstraction of the systematic
relations between instances of the system appears to be automatic in the sense
that it was not intentional.

EVENT CONCEPTS AS GENERATIVE KNOWLEDGE

In this section we present evidence in support of the contention that event
concepts are abstract in nature and therefore generative.

Shaw, McIntyre, and Mace (1974) argue that perceiving the nature of events
involved the detection of sufficient information to specify their affordance
structure. The term “affordance” is borrowed from James Gibson (1966) and
refers to the invariant perceptual information made available by objects and events
that specifies how animals and humans might adapt to their environments.

The affordance structure of events consists of two necessary components: the
transformation over which the event is defined (the transformational invariant)
and the structures which undergo the change wrought by the application of the
transformation (the structural invariant). The transformational invariant must be
perceptually specified in the acquisition set if the dynamic aspects of the event
are to be identified (e.g., that the event is of x running, rolling, growing, smiling,
etc.), while the structural invariant must be perceptually specified if the subject
of the event is to be identified (e.g., what x is: John runs, the ball rolls, the
flower grows, Mary smiles, etc.).! A set of instances of an event is not an

! Perhaps a better way to clarify the difference between structural and transformational
invariants is as follows: given that John runs, John walks, John smiles, John loves, the
subject of all these events is John; the subject’s structure is what is common or invariant
and, hence, is the structural invariant of all the events denoted. On the other hand, given the
following events: John runs, Bill runs, Mary runs, Jill runs, then there is no common subject.
All we know is that some object with a minimal structure to support the operation o run is
involved, The operation on the minimal structure x is the transformational invariant. But
note that even here to define that transformation presupposes some minimal structural
invariant as its necessary support. A similar argument for the necessity of postulating
minimal transformational invariants in order to define structures can -also be given. For
these reasons the affordance structure of events, inclusive of actions and objects, necessarily
requires both structural and transformational invariants for its definition. Since in ecological
science there are only affordance structures, that is, animal-environment, or subject—object
relations, the affordance concept is a universal semantic primitive that deserves careful study
by cognitive psychologists.
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exemplary set and, therefore, does not constitute a generator set for the event, if
it fails to provide perceptual information sufficient to specify both the transfor-
mational and structural invariants. To summarize this hypothesis:

All necessary conditions being satisfied, a person will acquire the concept
of an event when presented with an acquisition set of exemplary in-
stances (a generator set) because such a set provides the minimal per-
ceptual information sufficient to specify the affordance structure of the
event.

In the experiment discussed in the previous section we showed how a certain
subset of object configurations qualified both formally and psychologically as
the generator set for an event concept, that of an “orbiting” event defined over
geometric forms. Thus, the group generator description does seem to offer a
viable means of making explicit the manner in which abstract conceptual
systems may be creative.

The abstract concept derived from perceiving the orbiting of the stimulus
figures can be analyzed as follows: The generator set in the acquisition phase of
the experiment consisted of stimulus configurations sufficient to specify a
subgroup of the displacement group, namely, the orbiting group. This set of
stimuli constituted the structural invariant of the event while the group opera-
tion (orbiting) constituted the transformational invariant of the event. The
subjects succeeded in obtaining the concept of this event by detecting these two
invariants which taken together constitute the affordance structure of the event.

The orbiting group itself provides a description of the relevant aspects of the
abstract concept of the event. Thus construed, the perceived meaning of the
event is the orbiting group interpreted over the stimulus structures presented.
Consequently, we see no way or reason to avoid the conclusion that in all event
perception situations the existence of an abstract concept is entailed. Under this
view, the generator for the abstract event concept is that set of instances which
conveys sufficient perceptual information to specify both the transformational
and structural invariants defining the event. The meaning of this invariant
information for the human or animal perceiver is the affordance structure of the
event.

In our opinion, this analysis argues in favor of the hypothesis that perception
is a direct apprehension of the meaning of events insofar as their affordance
structure is concerned. Since abstract concepts are generatively specified by (i.e.,
abstractly equivalent to) their exemplary instances (generator set), their acquisi-
tion can also be considered direct, requiring no augmentation by voluntary
inferential processes. Similarly, no constructive cognitive process need be pos-
tulated to explain how abstract concepts are built up out of elementary
constituents as argued by the British Empiricists since such elementary con-
stituents play no necessary role in the definition of the concept.

Have we made too much of the apparent success of the generative systems
approach in a single line of experiments? It is important to ask whether the same
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analysis can be applied to a variety of experimental phenomena. We explore this
possibility in the next section.

Perceiving the Affordance Structure of Elaborate Events

So far we have presented an example involving an event whose affordance
structure can be formally described by very simple group structures, i.e., orbit-
ing. We would now like to discuss two complex events whose affordance
structures, although more elaborate, still seem amenable to generative systems
theory.

The shape of nonrigid objects. Theories of object perception usually attempt
to explain the perception of objects and patterns which do not change their
shape over time. However, a truly adequate theory must also explain the origin
of concepts of events where object configurations or the shape of objects
undergo dynamic change. Shaw and Pittenger (in press) have conducted a series
of experiments designed to explore this problem The assumption behind the
research is this:

Shape is considered to be an event-dependent concept rather than an absolute
property of static objects. This is contrary to the traditional view that identifies
shape with the metric-Euclidean property of geometric rigidity under transfor-
mation, that is, the fact that under certain transformations (e.g., displacements)
the distances between points on an object do not change. Unfortunately, this
definition is too narrow since it fails to apply to a manifold of natural objects
which remain identifiable in spite of being remodeled to some extent by various
“nonrigid” transformations (e.g., growth, erosion, plastic deformation under
pressure). '

Biomorphic forms, such as faces, plants, bodies of animals, cells, leaves, noses,
inevitably undergo structural remodeling as they grow, although their transforms
retain sufficient structural similarity to be identified. Such forms, like geological
structures under plastic deformation or archaeological artifacts under erosion,
are relatively nonrigid under their respective remodeling transformations. Since
the property of geometric rigidity is not preserved by any of these, it cannot
provide the invariant information for their identification. Clearly, then, a new
and more abstract definition of shape must be found upon which to develop a
theory of object perception that is broad enough in scope to encompass all
objects—rigid as well as nonrigid ones. Consequently, the following definition
was decided upon: Shape, as an event-perception concept, is to be formally
construed to mean the sum total of invariant structural properties by which an
object might be identified under a specified set of transformations.

This definition should sound familiar since it is but a restricted version of the
definition of the affordance structure of objects given earlier. But notice, that by
this definition the geometric rigidity of an object under displacement is but one
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of the many kinds of structural invariants possible. By a careful study of the
perceptual information used to identify human faces at different stages of
growth (i.e., age levels), it was hoped that the generality and fruitfulness of the
event-perception hypothesis might be further tested.

Perceiving the shape of faces as a growth event. Faces, no less than squares or
other shapes are dynamic events since their affordance structure (e.g., shape) is
derived from a growth process (the transformational invariant) which preserves
sufficient structure (structural invariant) to specify the identity of the face of
the person undergoing the aging transformation (growth). In a similar fashion,
different people at the same stage of growth, can be perceived as being at the
same age level because growth produces similar effects over different structures
(Pittenger & Shaw, 1975). These common effects constitute the information
specifying the transformational invariant of the growth process. Thus, each
transformation can be identified by the style of change wrought over various
objects to which it is applied.

In addition to empirically discovering the invariant information specifying the
identity of the structures over which an event is defined, a problem of equal
weight for the event perception hypothesis is to isolate the invariant information
specifying the transformation by which the dynamic aspect of an event is
defined. Both of these informational invariants must be found in every event
perception experiment if the affordance structure of the event being studied is
to be experimentally defined. Pittenger and Shaw conducted the following
experiments in an attempt to discover the affordance structure of the growth
event defined over human faces. The biological literature suggests two classes of
transformations for the specification of the transformation of skull growth:
strain and shear. A strain is a geometric transformation which, when applied to a
two-dimensional coordinate space, changes the length of the units along one axis
as a transformation of the units along the other axis. For instance, a strain
transformation can take a square into a rectangle or vice versa. On the other
hand, a shear is a geometric transformatfon which transforms the angle of
intersection of the coordinate axis, say from a right angle to something less or
more than a right angle. Such a transformation might take a square into a
thombus. Consequently, Pittenger and Shaw constructed a set of stimuli by
having a computer apply different degrees of these two transformations to a
human facial profile, and then by photographing the computer plotted trans-
forms of the given profile. Three experiments were run to test the hypothesis
that the perception of age level is derived from information made available by
growth events.

To illustrate the application of these transformations to faces, we will describe
the production of stimuli for the first experiment. The stimuli were produced by
applying combinations of these transformations globally to a two-dimensional
Cartesian space in which the profile of a 10-year-old boy had been placed so that
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the origin was at the ear hole and the y axis was perpendicular to the Frankfurt
horizontal (a line drawn tangent to the top orb of the ear hole and the bottom
orb of the eye socket).

The Jormula used for the shear transformation in producing the stimuli
expressed in rectangular coordinates was ¥’ =y, x' =x + tan 8y, where the tan 8
is the angle of shear and x', y' are new coordinates. The formula for the strain
transformation used, expressed for convenience in polar coordinates, was 6'=9,
r = r(l — k sin 6), where r is the radial vector and 9 is the angle specifying
direction from the origin. Here k is a constant determining the parameter value
of the strain. Thus in producing the stimuli tan § and k are the values to be
manipulated for varying the amount of shear and strain, respectively. (For a
detailed discussion of this approach see Shaw & Pittenger, in press.) The
calculations were performed by computer and the profiles drawn by a computer-
driven plotter.

The initial outline profile was transformed by all 35 combinations of seven
levels of strain (k = —0.25, -0.10, 0, +0.10, +0.25, +0.35, +0.55) and five levels
shear (6 = -15°,-5°, 0°, +5°, +15°). These transformations are not commuta-
tive. Shear was applied first. The resulting profiles are shown in Fig. 3.

These shape changes approximate those produced by growth. We hypothesize
that the changes are relevant to perception in two ways; they are a sufficient
stimulus for the perception of age while at the same time leaving information for
the identity of the face invariant. The reader will note, however, that profiles on
the extreme values for each variable are quite distorted. These values were
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FIG. 3 Transformation of a facial profile by shear and strain.
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chosen to test the supernormal stimuli hypothesis. Supernormal stimuli are
produced by exaggerating some relevant aspects of a stimulus. Ethologists claim
that such stimuli lead to exaggerated responses (Tinbergen, 1951).

Experiment 1

To test the effects of the shape changes induced by shear and strain the profiles
shown in Fig. 1 were presented by slide projector to the subjects in a task
requiring magnitude estimates of age. The subjects were instructed to rate the
ages of the profiles by choosing an arbitrary number to represent the age of the
first profile and assigning multiples of this number to represent the age of
succeeding profiles relative to the age of the first. Twenty subjects were asked to
rate the 35 slides resulting from the transformations described above. The results
were straightforward. Using a Monte Carlo technique Pittenger and Shaw found
that 91% of the judgments made by the subjects agreed with the hypotheses that
the strain transformation produced monotonic perceived age changes in the
standard profile. On the other hand, using the shear transformation to predict
judgments produced only 66% agreement. Since strain was by far the strongest
variable of age change, we decided to test the sensitivity of subjects to very small
changes in profiles due to this transformation.

Experiment 2

Sensitivity to the shape changes produced by the strain transformation was
assessed in the second experiment by presenting pairs of profiles produced by
different levels of the transformation and requiring subjects to choose the older
profile in each pair. A series of profiles was produced by applying strain
transformations ranging from k = —0.25 to +0.55 to a single profile, where % is
the coefficient of strain used in the equation controlling the computer plots.
Eighteen pairs of profiles were chosen; three for each of six levels of difference
in degree of strain. The pairs were presented twice to four groups of ten subjects.
Different random orders were used for each presentation and each group.
Subjects were informed that the study concemed the ability to make fine
discriminations of age and that for each pair they were to choose the profile
which appeared to be older. During the experiment they were not informed
whether or not their responses were correct. By correct response we mean the
choice of the profile with the larger degree of strain as the older.

Several results were found. An analysis of variance on percentage of errors as a
function of difference in strain showed a typical psychophysical result—a decline
in accuracy with smaller physical differences and an increase in sensitivity with
experience in the task. However, two other aspects of the results are more
important for the question at hand. First, shbjects do not merely discriminate
the pairs consistently but choose the profile with the larger strain as the older
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profile with greater than chance frequency; in the first presentation the larger
strain was selected on 83.2% of the trials and the second, on 89.2% of the trials.
In each presentation, each of the 40 subjects selected the profile with the larger
k as older on more than 50% of the trials. In other words, the predicted effect
was obtained in every subject. A sign test showed the change probability of this
last result to be far less than .001. Thus, the conclusion of the first experiment is
confirmed in a different experimental task. Second, sensitivity to the variable
proved to be surprisingly fine.

Experiment 3

A third experiment was designed to determine if a structural invariant existed by
which individual identity might be perceived as follows. We have all had the
experience of recognizing someone we know as a child years later when they
have grown to maturity. As a preliminary test of preservation of identity under
the strain transformation, profile views of the external portions of the brain
cases of six different skulls were traced from x-ray photographs and subjected to
five levels of strain. Five pairs of transformed profiles were selected from each
individual sequence; the degree of strain for members of three pairs differed by
0.30 and those of the other two pairs by .45 values of k. A profile of a different
skull was assigned to each of the above pairs which had the same degree of strain
as one of the members of the pair. Slides were constructed of the profile triples
such that the two profiles from distinct skulls which had the same level of strain
appeared in random positions at the bottom. Thirty subjects were presented the
slides and asked to select which of the two profiles at the bottom of the slide
that appeared most similar to the profile at the top. The overall percentage of
errors was low: for the 30 sets of stimuli presented to 30 subjects, the mean
error was less than 17%, with no subject making more than 33% errors. Since no
subject made 50% or more errors, a sign test on the hypothesis of chance
responding (binomial distribution) by each subject yields a probability of far less
than 0.001. Indeed, in another set of studies, Pittenger and Shaw also found that
people are quite able to rank order by age photographs of people taken over
nearly a decade of growth from pre- to post-puberty years.

The results of these three studies provide support for two important hypoth-
eses: the strain transformation due presumably to growth, not only provides the
major source of the relevant perceptual information for age level, but also leaves
invariant sufficient perceptual information for the specification of the individual
identity of the person by the shape of the head alone.

These experiments also support the contention that the perceived shape of an
object is not simply the shape of a static, rigid object, but is rather a higher order
structural invariant which remains relatively unchanged by the events (ie.,
transformational invariants) into which such objects may enter. Further dramat-
ic support for this claim is provided by the fact that the identity of human faces
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is preserved under elastic transformations as distinctive from growth as artistic
characterization. The success of political caricaturists rests on their ability to
satirize a political figure by exaggerating distinctive body or facial features
without obscuring the identity of the famous or infamous personage depicted.
Indeed, there is evidence that such an artistic redition of complex structures
facilitates their indentification (Ryan and Schwartz, 1956). But will the event
perception hypothesis apply equally well to still more elaborate events in which
complex transformations are defined over a variety of structures?

Perception of a tea-making event. Recently, at the Center for Research in
Human Learning, Jerry Wald and James Jenkins have been investigating the
generative nature of an elaborate event: the act of preparing tea. To study this
event 24 photographs were taken depicting the various steps involved in the
preparation of tea. These stimuli were presented to subjects following the same
experimental design used in the “orbiting™ event experiment discussed earlier.
Sixteen of these 24 pictures were used as an acquisition set portraying the
tea-making event to subjects. Later, these 16 pictures, plus the remaining 8 from
the original set, were shown to the subjects, who were asked to indicate whether
the picture was new or one which occurred during acquisition. The subjects were
unable to distinguish the new but appropriate pictures of the event from the
pictures they had actually experienced during acquisition. Once again we see
that a partial subset of the possible instances of an event can specify the entire
event.

The general results found in this experiment were essentially the same as those
found in the case of the “‘orbiting”-event experiment reported earlier. Namely, it
was again found that subjects were very good at recognizing as new pictures
which were physically similar to those in the acquisition set but inappropriate as
elements in the event. For example, if a type of movement or direction of
movement inappropriate to the event portrayed during acquisition was depicted,
subjects classified the picture as new. Clearly, the knowledge which subjects
gained during acquisition was knowledge of an abstract system of relations, that
is, an event, not knowledge of exact copies of the exemplars specifying the
event. Additional support for the contention that subjects are acquiring a
generative system of relations is provided by the finding that subjects who were
provided more experience with the acquisition pictures were even more likely to
mistake the novel but appropriate instances for those actually seen.

GENERAL CONCLUSIONS, AND
IMPLICATIONS FOR INSTRUCTION

Each of the event perception experiments discussed is not only amenable to a
generative systems explanation but seems to require it. The range of events
surveyed, from simple events such as orbiting objects, to more elaborate events
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involving growth of human faces and the preparation of tea, suggests that the
ability to formulate abstract concepts is a basic cognitive capacity underlying
knowledge acquisition. This characterization of knowledge acquisition has sever-
al important implications for a theory of instruction.

The most general implication concerns how we should conceptualize the

nature of those situations in which we accrue useful knowledge about our °

natural, cultural, social, and professional environments. If the majority of our
experiences in these areas involve encounters with either novel instances of old
events or fresh instances of new events, then the goals on instruction must go
beyond concern for how particulars may be learned. Rather, the primary goal
should be to train people to exploit more efficiently their cognitive capacity to
assimilate knowledge that is abstract and, therefore, generative.

Moreover, if adaptive responding to even ordinary events, such as recognizing
faces or making tea, entails generative knowledge of abstract relationships, then
this is all the more true for dealing with higher forms of knowledge in such fields
as science, philosophy, mathematics, art, history, or law. Acquisition of knowl-
edge in all areas is a result of abstraction over well chosen instances of events,
the exemplars which instantiate the generator sets for the concepts involved.
Accepting these conclusions, what potential impact might such a cognitive
theory of knowledge have upon current educational practices?

1. Programs of instruction should primarily consist of lessons in which stu-
dents are furnished with direct experience with those core concepts of the field.
As we saw in the case of the experiments reported, the abstraction of generative
systems requires first-hand experiences with those exemplary instances of a
concept that constitute its generator set. However, our educational institutions
typically, and sometimes exclusively, use the “lecture” technique by which
students are made passive recipients of the conclusions or implications drawn
from another person’s experience, where in actuality some version of the
experience itself would be a much better form of instruction. Instruction, which
takes the form of learning facts or principles about some concept x, is not a
substitute (although it may be a useful supplement) for acquiring direct experi-
ence about concept x, even if presented in some analogical or simpler proto-
typical form. This is why some courses of study wisely rely heavily upon
laboratory or field experience. Indeed, every classroom should be a “laboratory™
for first-hand, rather than second-hand experiences.

There is little new in the above observations regarding the preference of active
participation in the learning process over passive reception of material to be
learned. What is new, however, is the insight that the generative capacity to
formulate abstract concepts may be naturally engaged when the student experi-
ences a very special subset of exemplars, namely, the generator. Therefore, the
selection of the exemplars of a concept to be taught is a very different affair,

10. ABSTRACT CONCEPTUAL KNOWLEDGE 219

requiring the joint efforts of cognitive psychologists and instructional experts.

2. Another, related implication of the generative characterization of con-
ceptual knowledge is to offer a new theory of the transfer of training effects so
desirable throughout the educational progress of a student. How do old concepts
facilitate the learning of new ones; and how does new information become
integrated with existing information?

Since the generative nature of knowledge has nof. been seen as implying a core
cognitive capacity, both specific and general transfer have been seen as a second-
ary, spin-off effect of learning specific reactions to specific objects or events. We
have attempted to show throughout this chapter why this characterization of
learning is backwards. The generative cognitive capacity that is responsible for
transfer is not derivative from or based upon knowledge of exact replicas or
copies of experiences. It is the abstractness of concepts that accounts for the
generality or transfer of conceptual knowledge gained in one situation to new
situations. Transfer, therefore, is inherent in the acquisition of abstract concepts.

3. A final implication of this theory for instruction related to the selection of
criteria for evaluating performance as an indicant of the state of conceptual
knowledge attained by the student. This has proven to be a most difficult and,
somewhat surprisingly, a most controversial issue. The proposed theory suggests
why this is so.

A major source of difficulty in the evaluation of the knowledge a student has
acquired is to know what types of performance count. There are several
performance levels students may attain due to either their sophistication in an
area, their motivation, or the nature of the concepts to be learned. First, and
easiest to evaluate, is the ability to verbalize, or articulate in some other overtly
demonstrable form, exactly what they know about a topic. Unfortunately, this
level of performance is exhibited inadequately by most people and tends to be
rare except for simplistic cases where a rote memorization of particulars is
appropriate. Such knowledge, however, is not necessarily generative in nature
and, thus, its successful evaluation poses no guidelines for an adequate evalua-
tion of students’ abilities to use abstract conceptual knowledge.

A second and more frequently exhibited performance level is that the student
has attained useful knowledge of a topic but is unable to articulate what he or
she knows. Clearly, a very important goal of education is to bring a novice in
some subject matter area up to the level of an expert. Indeed, often we would be
very happy if our pedagogical attempts had even more limited success in that the
student somehow learned to make sound judgments although remaining unable
to articulate the basis for the judgments.

This state of affairs, rather than being rare among experts, is actually very
common. Few experts can specify, in algorithmic clarity, the reasoning process
they go through in order to arrive at a sound judgment with respect to a problem
in their area of expertise, although they may present a learned rationalization
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afterwards. Many art connoisseirs are able to distinguish styles of artists, cate-
gorize according to era, culture or school, various artifacts presented to them
without being able to say beforehand the criteria they use. Similarly, chess
masters intuit outcomes of games and strategies of opponents without being able
to specify a priori criteria for doing so. Indeed, in all areas of knowledge, to be
an expert is synonymous with the ability to render objectively sound judgments
without necessarily being able to specify every step in the ratiocinative process
involved. If it were not so difficult to do so, educating novices to the level of
experts would only require rote memorization of algorithmic judgmental pro-
cedures applied to rotely memorized banks of data.

The intuitive judgments of experts do, of course, promulgate from a knowl-
edge basis, but one that is usually more tacit than explicit. In short, expert
judgments are a by-product of generative systems of knowledge rather than of
inert data banks of factual information. Consequently, in our effort to evaluate
how much closer to an expert’s judgmental ability education has moved novices,
we want to assess primarily the degree of generative, tacit knowledge they have
obtained and not just their explicit knowledge of itemized facts. Based on the
current theory and findings, we suggest that the following questions should be
answered by any knowledge evaluation procedure:

a. Can the student identify the same set of clear-cases of the concept that a
majority of experts agree upon? This includes also the ability to distinguish
non-cases from true cases.

b. Will the student, once tutored in the concept area, select a prototypical
instance of the concept from a recognition set of instances as being most likely
an instance previously studied, even though it was, in fact, never seen?

¢. Can the student deal with novel instances of the concept with the same
facility shown with familiar ones? And corollary to both (b) and (c):

d. Does the repeatedly tutored student display an inability to recall whether
he or she has seen relevant particulars about the concept area before, while at
the same exhibiting considerable confidence that irrelevant particulars were not
seen before? This is a very important criterion for determining if the student has
indeed built up tacit knowledge structures that are not accessible to conscious
articulation. In fact, the proportion of false positives in recognition tests may
provide the only way to determine whether an inarticulate student has neverthe-
less gained sufficient knowledge for making sound intuitive judgments (on the
assumption, of course, that a comparison of the students’ judgments with that of
experts is not directly feasible).

Obviously, there is still much work to be accomplished before drawing any
final conclusions about the proposed theory. It already exhibits, however, in our
opinion, sufficient promise in both theoretical and practical areas to merit
further development by both cognitive and educational psychologists.
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