
Lab 2: 8051-Based Timer and Stopwatch

ENGR 323: Microoprocessor Systems

Prof. Taikang Ning

Submitted by: Vishal Bharam and Bicky Shakya

Introduction

In the current digital age, microcontrollers have become an indispensible technological tool.

Microcontrollers are single chip computers that are embedded into other systems, which can perform

multiple complicated operations at the same time. In addition, microcontrollers have high integration of

functionality, field programmability and are very easy to use. These features have helped microcontrollers

to find a wide spectrum of applications, in the field of automobiles, video games, manufacturing

industries and many others. Among all the microcontrollers in use today, the 8051 and its variations are

considered the most popular.

Problem Statement

In this lab, we will use the popular 8-bit 8051 microcontroller to design a system to perform

time-count. The timer is equipped with four 7-segment displays that will count from 00:00 to 59:59 and

then reset back to counting from 00:00.

The extension of the first lab will require us to include a stop-watch mode in our system. The

final system should meet the following requirements:

• To count minutes and seconds from 00:00 (out of reset) to 59:59 and repeat the counting after

every full hour (completed in the first lab)
• To allow external controls/interrupts to emulate a stopwatch which can reset, start and freeze

counts by the 100th of a second.

Specific Design Goals

As mentioned already, the primary objective of the first laboratory is to design a digital clock on a

4 LED display using 8-bit 8051 microcontroller. The target system is expected to perform sixty seconds

counts, i.e., for example counting from 00:00 to 00:59 in one second interval and repeating the counts one

second after it reaches 00:59. For displaying the time, four LED based displays will be used, among

which two digits are used for displaying minutes and remaining two for seconds.

This lab is divided into two different sections to make the whole process easier. The objective of

the first section is to complete the circuit consisting of four seven-segment decoder, 3-8 decoder, hex

inverter and the 4 LED display and check it using the inputs from CADET board. After displaying the

desired outputs on the LED using a CADET board, the main circuitry needs to be completed with the

8051 microcontroller, a latch and EEPROM. Using assembly language, the EEPROM is to be

programmed to display the digital clock counting from 00:00 second to 59:59 minutes and recount again

after resetting back to 00:00. The four 7-SEG LED’s require a higher power and many I/O pins. TO

overcome this drawback, a time-division-multiplexing (TDM) dynamic control method is used instead. In

this approach, output pins are shared by 7-SEG displays and each segment will be refreshed frequently

enough to make it seemly as statically lit to human eyes.

For the second lab, we need to incorporate a stop watch mode in the same circuitry that was used

to display the hour-timer. The stop-watch display will need to have the last two digits for milliseconds

(count ranging from 00 to 99). After 99 milliseconds have passed, the next digit needs to increment for

seconds. The seconds will need to range from 00 to 59. As we are using the same circuitry and trying to

keep hardware modifications to the minimum, we will be using the two external interrupts on the 8051 to

switch between the timer and the stop watch mode, start the stopwatch and freeze the timer while it is

running. The same concepts of time-division multiplexing will be used for the display. Modifications will

only be made to the coding section of the system, especially in the way the external interrupts are used to

execute specific subroutines. Firstly, the TMOD, TCON, IE and IP SFR’s should be properly configured

and interrupts TF0, TF1, IE0 and IE1 should be activated. Then, the first activation of an external

interrupt should invoke an external interrupt routine to change the updating timer overflow interrupt

service routine to an interval of a hundredth of a second. Also, it is to be noted that when the stop-watch

mode is activated, the timer should be simultaneously running/counting (in the background)

Hardware:

The 8051 microcontroller, also known as the MCS-51, will be used in this project. Given below is the

layout/pin assignment of the 8051 microcontroller.

The 8051has four ports, each port being equipped with 8 pins. Port 0 can be used as input or output pins

(depending on how we configure hardware i.e. connect pull up resistors). But mainly, pins on Port 0 can

be programmed to use both address and data (this is decided by the ALE pin; ALE = 0 indicates Port 0 be

used for data so, it would be D0-D7. ALE = 1 would set the pins for both address and data, provided it is

put through a latch (the latch, the 74HC573, is used in our system to demultiplex the address and data

signals on P0.0 – P0.7).

Port 2 will also be used in this design. Port 2 can be configured as either input or output pins by

programming. Here, we will only use P2.0 – P2.2. These pins will be connected directly to the EEPROM

without putting them through a latch.

The EEPROM we are using is 2 kilobytes (2 * 210 = 211). So, we will require 11 address bits and 8 data

bits (16 Kilobits = 2 Kilobytes * 8). For the 11 address bits, we have 8 pins coming through Port 0. The

remaining 3pins will be used from Port 2, which justifies selecting P2.0 – P2.2.

Below are the descriptions of some of the other pins that will be used in this project.

• PSEN and ALE: The pin PSEN from the 8051 is connected to the output enable (OE) pin on the

EEPROM. When PSEN is low, the EEPROM is enabled (so PSEN is active low).

In the system, the 8051 initially sends out address bits from P0.0 – P0.7 to the latch. All of the

events are clocked and during a clock cycle, when ALE goes high, the latch takes these address

bits and passes them on to the EEPROM to fetch the data stored at the sent address locations from

the 8051. In the following clock cycle, when the ALE goes to low and at the same time, PSEN

goes to low, the latch switches to collecting data bits from the EEPROM and passing it on to the

8051.

• EA: This pin is set to low to select the external memory (EEPROM).

XTAL1, XTAL2: These are the two pins that are used to connect an external clock to the 8051

microcontroller. The 8051 does have an on-chip oscillator but it requires the external clock to run

it. We connected a 12 Hz crystal to the 8051. This sets a clock speed of the 8051 to 1 Hz (divide

crystal frequency by 12 as the 8051 takes 12 clock pulses to execute one single instruction or one

machine cycle).

• RESET

Fig. Reset Circuitry

The reset circuitry is shown in the picture above. The RST pin on the 8051 (Pin 9) is connected to

a pushbutton and a capacitor (100 uF) in parallel. When the pushbutton is depressed, the RST

from the 8051 is connected to Vcc, turning it to high. This enables a reset of the system. When

the pushbutton is not depressed, the RST pin is connected to ground, which means that the system

needs to stay in its current state and should not reset. An LED was also connected in parallel with

the pull-down resistor so that it would light up whenever the pushbutton was pressed.

All the other pins are left unconnected as they are not needed for our counter system.

Other Chips for Use in the System:

• DM74LS138 (3 to 8 Multiplexer): This chip was used to serve as a selection line for the four

seven-segment display. The system would actually need a 2 to 4 mutliplexer but we used a 3 to 8

in its place, while tying the third input to ground. The two inputs would be connected to P0.4 and

P0.5 from the 8051. The output from those pins would determine which of the four 7 segment

displays we would be using at a given instant. For example, when both P0.4 and P0.5 would be

low, the first 7 segment display would be used where as both pins being high would mean the

fourth display would be used. Additionally, the G1 pin was tied to high and the G2 pins were tied

to ground as per the truth table for the multiplexer.

Fig. Pin Configuration for the DM74LS138

• DM7447A (BCD To 7-Segment Display): This decoder chip would be used to display numbers

on the individual seven-segment displays. The four inputs (the 4 digit BCD or A – D in the pin

configuration diagram below) were connected to P0.0 to P0.3 on the 8051 and the outputs were

connected to the display through a pull-up resistor. Also, the Lamp test and BI/RB0 pins were tied

to high as per the data sheet of the chip.

Fig. Pin Configuration for the DM7447A Decoder

• LDQ-M514RI (Four Digit Seven-Segment Display):

This display is used in showing the four digits of our timer.

Fig. Pin Configuration for the 4 Digit 7-Segment Display

The pin configuration suggests that pins 6,8,9 and 12 are used for selecting among the four digits.

These pins are connected to the output of the 3 to 8 demultiplexer. The other pins connect to the

outputs of the BCD to 7-Segment Display decoder. Depending on the BCD output from the

decoder, the necessary sections of the seven segment display will be lit up to display the numbers

on our timer.

• Vdd : This pin is connected to +5V and there is another pin, called Vss that is connected to

ground. These pins provide power to the 8051 (which usually draws about 500 mA).
• EEPROM (MC28C16A): The external memory we used in this system was the MC28C16A

EEPROM, which has a capacity of 2 Kilobytes.

Fig. Pin Configuration for MC28C16A

Pins A0 – A10 are connected to Ports 0 and 2 from the 8051 (through latch for pins from Port 0).

These connections are important for relaying the data/address to and from the 8051. The Output

Enable (G) pin is connected to the PSEN pin from the 8051. This pin basically determines

whether we are using the EEPROM or not (PSEN = 0 indicates EEPROM enable). The pins D0 –

D7 are connected back to P0.0 – P0.7 on the 8051 according to the system schematic provided.

Also, the chip enable (E) is connected to GND so that the EEPROM is enabled at all times (active

low). Vcc is connected to +5V and Vss is connected to GND to power up the EEPROM.

• Pushbuttons on CADET Board
For the second lab, one pushbutton on the CADET board will be connected to pin 3.2 (external

interrupt 0) and the other pushbutton will be connected to pin 3.3 (external interrupt 1) on the

8051. These pushbuttons are naturally shorted to ground but upon pushing the button, a HIGH

signal (+5V) will be sent to the respective pins to which they are connected (P3.2 andP3.3). These

two buttons will be used to invoke external interrupts.

Software:

This lab assignment was the extension of the previous lab, which was 8051-based digital

clock. The system was to be expanded by adding two external interrupts to allow flexibility to

emulate stopwatch function. Though, the primary objective of this lab was to emulate stopwatch

function, we also used the previously built digital clock. Thus, the syntax for the digital watch is just

expanded using the external interrupts. The brief flowchart of the syntax is given below:

In order to make the programming aspect easier, we used the ‘EQU’ notation to assign various

variables to different memory addresses. As both of us had a bit experience with languages using

variables, variable assigning made our job a little clear. Using indirect addressing, a helpful feature in

assembly, we were able to assign variables as given below.

As we can see in the subroutine above, temporary memory addresses are being used to save each

digit on the 4 7-SEG LED display. We also initialized all the bit addressable bits in the special function

registers, TMOD and TCON, along with counter, which we will be needed in our program. Memory

addresses from 30h to 33h are used sequentially to initialize from last digit of second to highest digit of

minute. Memory address 35h and 36h are initialized to the highest and smallest value of timer 0

respectively, while address bytes 37h and 38h are initialized to the highest and highest value of register 0

(R0), which is used to shift the digit so that the display can be refreshed frequently enough on the 4

7-SEG LED display.

After assigning the temporary memory addresses, the timer is enabled and is ready to count. As

given in the figure below, values for the all digit on the 4 7-SEG display are initialized to some hex

number which is to represent zero as we want the clock to start from 00:00. These initialized values are

used later in the ISRTF0 subroutine. In addition, the counter is also set to zero as well.

Register 0 (R0) is initialized to the value of last digit on LED display consisting on 0-9 seconds

and first digit, which holds the value for 0-5 minutes. In order for the display to be refreshed, a 5ms delay

is being placed between each refresh so that the display will not be flickering and it will seem statically lit

to the eyes. Thus, value of EC77h (FFFFh-5000d) is then loaded to the timer 0 as shown below.

Furthermore, the TMOD is also set to 01, which means timer0 is enabled while timer1 is disabled as it is

not being used.

Then, the timer 0 overflow interrupt subroutine is set. As we know, the timer0 overflow

subroutine (Timer 0) is set to overflow every 5ms. When the timer overflows, the Timer Overflow

Interrupt0 (ISRTF0) flag is set and the 000Bh memory jump address is called, which immediately jumps

to the ISRTF0 subroutine and executes it. In this subroutine, we increase the value in R0, which controls

which digit is being displayed. Because the subroutine is called every 5ms, our program cycles through

the digits every 5ms, giving the illusion that all four digits are being displayed at the same time. It is also

necessary to reset the timer flow so that it will overflow after the next 5ms.

The values that were used to initialize each digit of the 4 7-SEG LED display are used to create

loops that will return the incremented values from 0 to 9 the lowest digits (2nd and 4th) of seconds and

minutes values and 0-5 for the highest digits (1st and 3rd) of second and minutes values. Furthermore, we

know that delay was set for 5ms, the counter variable was repeated for 200 times (200*5000 =

1000000µsec = 1sec) to shift the values from digit to digit. After reaching the value of 59:59 minutes, the

display is reset back to 00:00 second as shown below.

As seen in the syntax above, ‘CONTINUE’ function is used to display the digit on the 4 digit

7-SEG display. The position of the digit determined by the register R0, so R0 is moved to accumulator

(A). The position of digit is compared and incremented using ‘CJNE’ and the values are retuned using

‘RETI’ as shown below:

Implementation:

After sketching the schematic for the 8051 system, the whole 8051 system was wired on the PC

board using the IC sockets. The whole system included 8051 connected to the latch and EEPROM along

with an external circuit with BCD 7-segment decoder (7447), 3-8 decoder (138) and four 7-SEG display

(LDQ-M514RI). All of the chips were powered in parallel and they were given common ground. The

program written in Keil µVision was loaded into the EEPROM through EMP21 Device Programmer.

For the second lab, the only hardware modification we made was that we connected Pins 3.2 and 3.3 on

the 8051 to the two pushbuttons on the CADET board. This was done because on pressing the pushbutton,

we would invoke the external interrupts for activating the stop-watch (switching modes) and also freezing

the stop-watch count. Normal wire wrapping to make the connections to the external interrupt pins.

Fig. View of the Overall 8051 System on a PC Board

During the process of designing the system, we encountered our first main roadblock when we

tried to test the part of our circuit for the 4 digit seven-segment display. We did not use the 8051 at this

stage. We connected the pins (corresponding to P0.0 – P0.5 in the 8051) from the 8051 socket into six

separate logic switches on the CADET board (4 for the BCD and 2 for selecting the digit to be displayed).

The output from those logic switches were connected to our circuit and those logic switches were varied

to display numbers on the four-digit seven-segment display. Unfortunately, the only output we were

getting on the display was a zero on the first digit. We later realized that we had wired the 4-digit seven

segment displays in the opposite way, leading to the error. After fixing that problem, we finished wiring

the entire circuit on the PCB board. Later on, we encountered another problem. After programming the

EEPROM and loading it on the system, we found that no matter what code we uploaded, the display was

either only a zero on the first digit or no display at all. At times, we found that several of the wire wraps

we had made had either shorted or came off loose. But nonetheless, our system still did not respond to the

code. We finally figured out (with help from Prof. Ning of course) that we had wired up our reset circuit

incorrectly. When the push button was depressed, the Reset pin on the 8051 should have been set to high

(as it would be shorted to Vcc. But it was not so; instead, Reset pin showed a voltage close to zero when

the pushbutton was depressed. We then rewired our reset circuit properly after which our system

responded to the program stored on the EEPROM.

For the second lab, the major problem we encountered was the problem of refreshing the display for the

stopwatch mode. We noticed that even after putting in the correct delay values, our stopwatch mode

would flicker too much and make it hard for us to read the count. We found out in the end that

re-initializing the values for delay in the interrupt service routine (besides initializing at the start of the

program) fixed the problem.

Also, we initially faced a problem with the stopwatch count. Upon switching to the stopwatch mode, we

observed that the stopwatch count would begin from the count that the timer had left off, instead of

starting from 00:00. After much time, we figured out the simple mistake we had made; we had not

re-initialized the values for the display digits in the interrupt service routine. After doing that, all the

display digits were reset before starting the stopwatch count, as per the design requirement.

It also took a while to figure out how to freeze the stopwatch count. In the end, we ended up using the

bit-addressable registers we had access to, in the 8051. We used a bit from the 20h register in the bit

memory space of the 8051 Internal RAM. This bit was initially cleared at the start of the program but

then, in our interrupt service routing for external interrupt 1, we defined the statement ‘CPL BIT1’. This

meant that whenever the pressing of the pushbutton would call on the external interrupt 1, BIT1 would be

set. In our program, we had a JNB statement where, if BIT1 was not set, the program would go towards

counting the stopwatch. But if BIT1 was set (through external interrupt 1), the program would skip the

stopwatch counting part, which would effectively ‘freeze’ the value of the stopwatch at what it was before

calling on external interrupt 1. We initially tried another approach too, where the stopwatch subroutine

was called in ISRTF0 using the ‘AJMP’ command. We were thinking about disabling the ISRTF0 through

ISRIE1 to freeze the stopwatch count. This however, did not work well at all. But the second approach we

used (with BIT1, JNB) worked quite well in the end and allowed us to freeze the stopwatch by pressing

the External Interrupt 1 pushbutton, while the stopwatch was running.

Results and Discussion

This lab gave us a great understanding of the 8051 microcontroller and a sample timing system

that could be built around it. One of the most challenging parts of the whole project was to come up with

a specific technique to write the assembly code. After putting our ideas and techniques into a flowchart,

the coding process became much easier. As discussed earlier, we encountered some problems in the actual

circuit which prevented us from getting the required output. However, after spending a lot of time on

debugging, we got everything working perfectly. Our system was successfully able to count from 00:00 to

59:59 after which it reset to 00:00 and started counting again. Thus, our system met its design goals.

The second lab was also successfully completed. We successfully expanded our preexisting code for the

timer to include the stopwatch mode, by coding for the external interrupts. Different interrupt service

routines were created for the stop watch mode and were successfully invoked by activating the

pushbuttons. In the end, our expanded system was able to display the timer mode properly, counting from

00:00 to 59:59 (MM:SS) and was also able to switch to stopwatch mode, where the count started from

00:00 (SS:MsMs) and kept on going until ‘freeze’ was evoked by another interrupt service routine

(controlled by the pushbutton).

So, to conclude, we successfully built an 8051-based system that incorporated several elements such as

time-division multiplexing, external interrupts and timer overflow interrupts to operate a timer as well as

a stopwatch.

References

- Datasheets for respective chips
- http://www.8052.com/tuttimer.phtml

http://www.8052.com/tuttimer.phtml

