Khaoula Ben
With Trinity College currently celebrating 25 years of Neuroscience, there is no better time for us to have a neuroscience-focused school president. President Berger-Sweeney’s talk last Thursday revolved around the past 15 years of her research, during which she studied autism spectrum disorders in mice. When she first began her studies, rats were the more commonly used models, but she switched her focus to better understand the correlation of mice and human genomes. In order to be able to model a human disorder in an animal like a mouse one must tackle some if not all of the following characteristics and ensure that there is overlap: symptoms, genetics, chemical changes, brain anatomy, among others. Of course, mice and humans are anatomically and physiologically difference. For example, while mice don’t speak in the way that humans do, they make ultrasonic vocalizations, which make them similar enough.
The next question that come up after finding a suitable model is finding a way to properly model the disease in question. President Berger-Sweeney studied pervasive developmental disorders, which interrupt normal neural in childhood and require early treatment, particularly an autism spectrum disorder known as Rett syndrome. Autism, by definition, is a genetically and epigenetically influenced disorder that reduces social interaction, communication, and joint attention. Furthermore, in the United States, 1in 110 children are affected, it with four times as many being male. (Schavietz and Berger-Sweeney, 2012). Rett syndrome, more specifically, is a regressively developmental disorder, which mostly affects 1/2000 live births, particularly girls, since boys rarely survive to birth (Katz et al., 2012). The most common symptoms are difficulty with communication and hand wringing/flapping. These girls appear healthy at birth but development slows down at 6-18 months, followed by rapid regression in years 1 to 3, when they exhibit stunted head and physical growth, seizures, and more autistic characteristics. Years 5 to 10 are a period of pseudo-stabilization, while adulthood is tinged with a regression into scoliosis. Few girls survive past age 30, a worrisome trend.
Rett syndrome’s “cause” has been attributed to a transcriptional repressor, methyl-CpG-binding protein 2 (Mecp2), which usually blocks the transmission of the gene (Katz et al., 2012). Loss of this repressor means a loss of control over the gene that causes the condition. In 95% of Rett syndrome cases, this loss is caused by a spontaneous mutation on an X chromosome. Unfortunately, at this point in time, Rett syndrome is currently not entirely treatable. However, some nutritional supplements and drugs like choline, Acetyl-L-Carnitine (ACL) and Galantamine butyl-carbamite have allowed for some progression and improvements (Katz et al., 2012). The next step for this research would be to continue experimentation in hopes of finding the ultimate cure.
Unfortunately, with autism affecting 1 girl for every 4 boys (Schavietz and Berger-Sweeney, 2012) and more specifically, Rett Syndrome affecting only 1 in 10,000 girls, (Katz et al., 2012), they are often misdiagnosed, leading to preventable progression (Willingham, 2015). Not to mention, of course, the stigma associated with neurological conditions is amplified in autism with its extremely visible symptoms, worsened by the fact that Rett syndrome affects young girls who are thus bullied and often turn to eating disorders and depression (Willingham, 2015). Talks like the one President Berger-Sweeney presented are important in educating the public and keeping people aware of conditions which plague such helpless children. I know that I, for one, had absolutely no knowledge of Rett Syndrome’s existence before her talk.